Weltweite Ringfahndung nach Dunkler Materie: Sensornetzwerk GNOME publiziert erstmals umfassende Daten in „Nature Physics“

23.05.2022

Diese Mitteilung basiert auf einer Pressemitteilung der Johannes Gutenberg-Universität Mainz

Ein internationales Forschungsteam unter federführender Beteiligung des Exzellenzclusters PRISMA+ der Johannes Gutenberg-Universität Mainz (JGU) und des Helmholtz-Instituts Mainz (HIM) hat erstmals umfassende Daten zur Suche nach dunkler Materie mit einem weltweiten Netzwerk an optischen Magnetometern veröffentlicht. Dunkle Materie-Felder sollten in den zahlreichen Stationen des GNOME Netzwerks ein charakteristisches Signalmuster erzeugen, das durch korrelierte Messungen nachgewiesen werden kann, so die Überlegung. Bei der Analyse von Daten aus einem einmonatigen Dauerbetrieb von GNOME gab es noch keinen entsprechenden Hinweis. Die Messung erlaubt aber präzise Vorhersagen von den Eigenschaften Dunkler Materie zu formulieren, wie die Forscher in der renommierten Fachzeitschrift „Nature Physics“ berichten.

GNOME steht für Global Network of Optical Magnetometers for Exotic physics searches. Dahinter verbergen sich über den Globus verteilte optische Magnetometer. Mit GNOME wollen die Forscher insbesondere die Suche nach Dunkler Materie vorantreiben – eine der aufregendsten Herausforderungen der Grundlagenphysik im 21. Jahrhundert. Denn schon lange ist bekannt, dass viele rätselhafte astronomische Beobachtungen, wie die Rotationsgeschwindigkeit von Sternen in Galaxien oder das Spektrum der kosmischen Hintergrundstrahlung am besten durch Dunkle Materie erklärt werden können.

„Als einer der vielversprechendsten Kandidaten für Dunkle Materie gelten heute extrem leichte bosonische Teilchen. Zu ihnen zählen unter anderem sogenannte Axion-like Particles, kurz ALPs“, sagt Professor Dr. Dmitry Budker, Professor bei PRISMA+ und am HIM, einer institutionellen Kooperation der Johannes Gutenberg-Universität Mainz und des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt. „Sie können auch als klassisches Feld, das mit einer bestimmten Frequenz oszilliert, betrachtet werden. Eine mögliche, theoretisch vorhergesagte Eigenheit solcher bosonischen Felder ist, dass sie Muster und Strukturen bilden können. Im Ergebnis könnte die Dichte der Dunklen Materie in vielen verschiedenen Regionen konzentriert sein. Es könnten sich zum Beispiel diskrete Domänenwände bilden, die kleiner als eine Galaxie, aber viel größer als die Erde sind.“

„Durchdringt eine solche Wand die Erde, wird diese nach und nach durch das GNOME-Netzwerk erkannt und kann in den Magnetometern vorübergehende charakteristische Signalmuster hervorrufen“, erläutert Dr. Arne Wickenbrock, einer der Mitautoren der Studie. „Noch dazu sind die Signale miteinander in bestimmter Weise korreliert, je nachdem, wie schnell sich die Wand bewegt und wann sie den jeweiligen Standort erreicht.“

Mittlerweile besteht das Netzwerk aus 14 Magnetometern, die über acht Länder weltweit verteilt sind: Deutschland, Serbien, Polen, Israel, Südkorea, China, Australien und den USA. Neun von ihnen lieferten Daten für die aktuelle Analyse. Das Messprinzip beruht auf einer Wechselwirkung der Dunklen Materie mit den Kernspins der Atome in dem Magnetometer. Die Kernspins dieser Atome werden mit einem Laser mit einer bestimmten Frequenz angeregt und dabei alle in einer Richtung ausgerichtet. Ein potentielles Dunkle-Materie-Feld kann diese Richtung stören, was messbar ist.

Im übertragenen Sinn kann man sich vorstellen, dass die Atome in dem Magnetometer zunächst durcheinander tanzen, verdeutlicht Hector Masia-Roig, Doktorand in der Budker-Gruppe und ebenfalls Autor der aktuellen Studie. „Wenn sie die richtige Frequenz an Laserlicht „hören“, drehen sie sich alle zusammen. Dunkle Materieteilchen können die tanzenden Atome aus dem Gleichgewicht bringen. Diese Störung können wir sehr genau messen.“ Und nun wird das Netzwerk an Magnetometern wichtig: Wenn die Erde sich durch eine räumlich begrenzte Wand aus Dunkler Materie bewegt, werden nach und nach die tanzenden Atome in allen Stationen gestört. Eine dieser Stationen steht in einem Labor am Helmholtz-Institut in Mainz. „Erst wenn wir die Signale aller Stationen abgleichen, können wir beurteilen, was die Störung ausgelöst hat“, so Hector Masia-Roig. „Übertragen auf das Bild der tanzenden Atome heißt das: Wenn wir die Messerergebnisse aller Stationen vergleichen, können wir entscheiden, ob es nur ein mutiger Tänzer war, der aus der Reihe tanzt, oder tatsächlich eine weltweite Störung durch dunkle Materie.“

In der aktuellen Studie analysiert das Forschungsteam die Daten aus einem einmonatigen Dauerbetrieb von GNOME. Statistisch signifikante Signale treten in dem untersuchten Massebereich von einem Femtoelektronenvolt (feV) bis 100.000 feV nicht auf. Im Umkehrschluss bedeutet dies, dass die Forschenden den Bereich, in dem solche Signale der Theorie nach zu finden sein könnten, noch weiter als bisher einschränken können. Für Szenarien, die auf diskrete Dunkle-Materie-Wände setzen, ist das ein wichtiges Ergebnis, „auch wenn wir mit unserer weltweiten Ringfahndung eine solche Domänenwand bisher nicht nachweisen konnten“, so Joseph Smiga, ebenfalls Doktorand in Mainz und Autor der Studie.

Die zukünftige Arbeit der GNOME-Kollaboration wird sich darauf konzentrieren, sowohl die Magnetometer selbst als auch die Datenanalyse zu verbessern. So soll insbesondere ein Dauerbetrieb noch stabiler möglich sein. Das ist wichtig, um zuverlässig nach Signalen zu suchen, die länger als eine Stunde anhalten. Zudem sollen die bisher in den Magnetometern verwendeten Alkali-Atome durch Edelgase ersetzt werden. Unter dem Titel Advanced GNOME erwarten die Forscher dadurch für künftige Messungen eine erheblich bessere Empfindlichkeit bei der Suche nach ALPs und Dunkler Materie. (JGU/BP)

Weitere Informationen

Link zur wissenschaftlichen Veröffentlichung in Nature Physics (Englisch)

Link zur Arbeitsgruppe von Professor Budker (Englisch)

 



Loading...