50 Jahre GSI

https://www.gsi.de/fileadmin/oeffentlichkeitsarbeit/logos/01_50_Years_GSI_RGB.png

FAIR

Bei GSI entsteht das neue Beschleunigerzentrum FAIR. Erfahren Sie mehr.

https://www.gsi.de/fileadmin/_migrated/pics/FAIR_Logo_rgb.png

GSI ist Mitglied bei

https://www.gsi.de/fileadmin/oeffentlichkeitsarbeit/logos/Helmholtz-Logo_web.png

Gefördert von

BMBFHMWKMWWKTMWWDG

Außenstellen

HI-JenaHIM

Fingerabdrücke von schweren Elementen in Neutronensternkollisionen

Bild: NASA and ESA. Acknowledgment: N. Tanvir (U. Leicester), A. Levan (U. Warwick), and A. Fruchter and O. Fox (STScI)

Die erste Aufnahme einer Neutronensternkollision, aufgezeichnet vom Hubble Space Telescope.

 

22.02.2019

Entstehen einige der schwersten Elemente unseres Universums bei der Kollision von Neutronensternen? Das kann sich daran ablesen lassen, wie sich die Leuchtkraft dieses Ereignisses über die Wochen entwickelt. Eine Gruppe von Wissenschaftlern von GSI und FAIR, der TU Darmstadt, der Nationalen Akademie der Wissenschaften von Taiwan und der Columbia University in den USA veröffentlichte diese Ergebnisse kürzlich im Fachjournal Physical Review Letters.

Die erstmalige Beobachtung einer Neutronensternkollision im Jahr 2017, die von Gravitationswellendetektoren als erstes aufgespürt wurde, war eine Sensation – auch für die Kernphysik. Wie von GSI-Wissenschaftlerinnen und -Wissenschaftlern vorhergesagt, gab es eindeutige Hinweise darauf, dass in diesen extremen kosmischen Ereignissen schwere Atomkerne erzeugt werden. Doch exakt welche Kerne in Neutronensternkollisionen produziert werden, ist noch unklar.

„Die Leuchtkraft der Neutronensternkollision lässt darauf schließen, welche Elemente bei diesem Ereignis entstehen“, sagt der GSI-Wissenschaftler Professor Gabriel Martínez-Pinedo, der maßgeblich an dieser Publikation und bereits auch an den Vorhersagen zur Entstehung von schweren Kernen in Neutronensternkollisionen beteiligt war. „Bei dem Ereignis 2017 konnten wir das noch nicht beobachten, weil die Neutronensternkollision hinter der Sonne verschwand und wir damit die Lichtemissionen in einer entscheidenden Phase nicht vollständig beobachten konnten.“ Doch schon bald werden die nächsten Beobachtungen von Neutronensternkollisionen erwartet. Um sie analysieren zu können, haben Martínez-Pinedo und seine Kollegen Vorhersagen getroffen, wie sich das Leuchten der Neutronensternkollision entwickelt, je nachdem welche kernphysikalischen Prozesse bei der Verschmelzung ablaufen und welche schweren Elemente entstehen.

Etwa einen Monat nach dem Ereignis wird die Leuchtkraft nur noch von ca. 30 verschiedenen Kernen beeinflusst, weil Kerne mit kurzen Lebenszeiten bereits zerfallen sind. Einige schwere Isotope sind dominant in der Energieabgabe und beeinflussen dadurch die Stärke und die Dauer des Leuchtens, zum Beispiel Californium-254, gefolgt von Radium-223 und Actinium und zuletzt dem Radium-225. „Wenn die Teleskope die nächste Neutronensternkollision in hoher Auflösung aufzeichnen, sehen wir dank unseres Modells wahrscheinlich schon anhand dessen, wie sich das Leuchten über die Wochen verändert, welche schweren Elemente entstanden sind und wie der Kernsynthese-Prozess abläuft“, sagt Martínez-Pinedo.

In die Modelle, mit denen die Leuchtkraft und -dauer vorhergesagt wird, fließen viele Kerneigenschaften ein, die jedoch noch nicht ausreichend bekannt sind. Hier kommt die Forschung an der im Bau befindlichen Beschleunigeranlage FAIR ins Spiel. Die Experimente der FAIR-Kollaboration NUSTAR haben hauptsächlich zum Ziel die schweren Kerne, die bei Neutronensternkollisionen oder Supernovae entstehen, mithilfe von Teilchenbeschleunigern im Labor zu erzeugen und genauer zu untersuchen. „Mit FAIR werden wir das Universum im Labor erforschen können“, sagt Professor Karlheinz Langanke, Forschungsdirektor von GSI und FAIR. „FAIR wird eine weltweit einzigartige Einrichtung sein. Mit ihr können Forscherinnen und Forscher die Vielfalt des Universums ins Labor holen, um fundamentale Fragen wie die Entstehung der chemischen Elemente im Kosmos zu untersuchen.“ (LW)

Mehr Informationen

Originalveröffentlichung: Fingerprints of Heavy-Element Nucleosynthesis in the Late-Time Lightcurves of Kilonovae


/fileadmin/oeffentlichkeitsarbeit/Aktuelles/2019/Kilonova.jpg
Die erste Aufnahme einer Neutronensternkollision, aufgezeichnet vom Hubble Space Telescope.
Bild: NASA and ESA. Acknowledgment: N. Tanvir (U. Leicester), A. Levan (U. Warwick), and A. Fruchter and O. Fox (STScI)