FAIR

Bei GSI entsteht das neue Beschleunigerzentrum FAIR. Erfahren Sie mehr.

fileadmin/_migrated/pics/FAIR_Logo_rgb.png

GSI ist Mitglied bei

fileadmin/oeffentlichkeitsarbeit/logos/Helmholtz-Logo_web.png

Gefördert von

BMBF HMWK MWWK TMWWDG

Außenstellen

HI-Jena HIM

21.06.2012 | Sudoku für das Kernmodell

Wissenschaftler entschlüsseln Zerfallsschema von Zinn-100 bei GSI

(c) GSI Helmholtzzentrum für Schwerionenforschung

Hier werden die Gammastrahlen vom Zinn-100-Zerfall gemessen.

(c) G. Otto, GSI Helmholtzzentrum für Schwerionenforschung

Der 75 Meter lange Fragmentseparator, der die Zinn-100-Isotope aus einem Gemisch vieler Teilchen herausfiltert.

 

Wie entstehen schwere Elemente im Universum? Für die Beantwortung dieser Frage ist eine genaue Vorstellung vom Aufbau der Atomkerne unverzichtbar. Ein internationales Team von Wissenschaftlern hat nun mit einem Experiment an der GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt das Zerfallsschema des seltenen instabilen Zinn-Isotops Zinn-100 entschlüsselt. Die im renommierten Fachmagazin Nature veröffentlichten Ergebnisse helfen, das Kernstruktur-Modell zu verbessern und zu erweitern.
 
Mit Modellen können Wissenschaftler Vorgänge im Universum erklären und vorhersagen, die sich nicht direkt messen oder beobachten lassen. Je genauer dabei das Modell ist, umso verlässlicher die Erklärungen. Die Einblicke, die das Zerfallsschema von Zinn-100 in die Struktur von Atomkernen gibt, machen bessere Modellvorhersagen für instabile Isotope möglich.
 
Die Wissenschaftler haben beim Zerfall des Zinn-100-Kerns die frei werdende Energie gemessen, die stufenweise über Kaskaden abgegeben wird. Herauszufinden wie diese Kaskaden verlaufen, ist wie eine Knobelaufgabe. „Bei einem Zerfallsschema gibt es genauso viele Möglichkeiten wie bei einem schwierigen Sudoku-Rätsel“, sagt Jürgen Gerl, Leiter der Forschungsabteilung für Gamma-Spektroskopie bei GSI. „Wir haben einige Kästchen vorgegeben, aber den Rest müssen wir richtig kombinieren. Und ist eine Zahl falsch, stimmt das gesamte Ergebnis nicht.“
 
Nach intensiver Datenauswertung blieb nur eine Möglichkeit übrig: Anstatt wie ursprünglich vermutet in einer Zerfallskaskade, zerfällt Zinn-100 in zwei parallelen Kaskaden. Dabei findet ein sogenannter „superallowed Gamow-Teller-Übergang“ statt, ein energetisch besonders günstiger Übergang. „Gamow-Teller-Übergänge spielen eine wesentliche Rolle in Kernreaktionen, die in Sternexplosionen, so genannten Supernovae, ablaufen. In Supernovae entstehen die schweren Elemente jenseits des Eisens“, sagt Magdalena Górska, Wissenschaftlerin bei GSI und stellvertretende Sprecherin des Experiments.
 
Der Zinn-100-Kern ist bei Physikern für die Erforschung der Kernstruktur besonders begehrt. Er besteht aus 50 Protonen und 50 Neutronen, die jeweils abgeschlossene Schalen bilden und somit für eine besondere Stabilität sorgen. Ähnlich wie Elektronen in der Atomhülle von Edelgasen. Zinn-100 ist der schwerste Atomkern mit zwei abgeschlossenen Schalen, der dabei ebenso viele Protonen wie Neutronen besitzt. Seine innere Struktur ist im Vergleich zu anderen Atomkernen relativ einfach. Deshalb ist er besonders geeignet, um bestehende Modelle zu überprüfen und zu verbessern.
 
Die Herstellung des für die Wissenschaftler so begehrten Forschungsobjekts ist nur mit großem technischem Aufwand möglich. In der mehreren hundert Meter langen Beschleunigeranlage bei GSI werden Ionen fast auf Lichtgeschwindigkeit beschleunigt und auf Materie geschossen. Dabei entsteht in sehr seltenen Fällen ein Zinn-100 Kern. Der erste Zinn-100-Kern überhaupt wurde an der GSI-Beschleunigeranlage im Jahr 1994 hergestellt und nachgewiesen. Da der Teilchenbeschleuniger bei GSI mittlerweile jedoch höhere Intensitäten hat, können mehr Zinn-100-Kerne hergestellt werden. Für das Experiment standen somit mehr als 200 Zinn-100-Kerne zur Verfügung – genug, um verlässliche Ergebnisse zu bekommen.
 
Mit der Beschleunigeranlage FAIR, die gerade bei GSI gebaut wird, soll bis 2018 die Produktionsrate für Zinn-100 und viele andere seltene Isotope um bis zu 10.000fach erhöht werden. Damit erhoffen sich die Wissenschaftler eine so große Präzision der Messergebnisse, dass die Modelle zur Beschreibung der Struktur der Atomkerne wesentlich verbessert werden und damit das Verständnis über die Entstehung der Elemente im Universum.
 
Autoren des Artikels sind 62 Wissenschaftler aus 14 Ländern von 21 Instituten. Die Leitung lag bei der TU München.

Kontakt für Presseanfragen:
Dr. Ingo Peter
Tel: +49-6159-71-1397
E-Mail: i.peter(at)gsi.de

Originalveröffentlichung: „Superallowed Gamow-Teller Decay of the Doubly Magic Nucleus Sn-100“, Christoph B. Hinke et al., Nature, 20. Juni 2012 – DOI: 10.1038/nature11116
Nature-Artikel


/fileadmin/oeffentlichkeitsarbeit/pressemitteilungen/2012/Rising_Sn-100.jpg
/fileadmin/_migrated/pics/GSI_Beschleuniger_FRS_1.jpg
Hier werden die Gammastrahlen vom Zinn-100-Zerfall gemessen.
Der 75 Meter lange Fragmentseparator, der die Zinn-100-Isotope aus einem Gemisch vieler Teilchen herausfiltert.
(c) GSI Helmholtzzentrum für Schwerionenforschung
(c) G. Otto, GSI Helmholtzzentrum für Schwerionenforschung