The new accelerator facility FAIR is under construction at GSI. Learn more.


Funded by


Funding for joint project: Team conducts research at CRYRING

Photo: J. Hosan/GSI Helmholtzzentrum für Schwerionenforschung GmbH

Cryring – exterior view



The news is based on a press release of the University of Duisburg-Essen

The research is concerned with the properties of magnetic materials and tailor-made changes to new materials: Two teams of female physicists from the University of Duisburg-Essen (UDE) will receive a total of 2.8 million euros for a period of three years. They are developing new instruments for experiments on particle accelerators. One project will be implemented at the CRYRING ion storage ring at the GSI and FAIR campus in Darmstadt.

At CRYRING, which will also be part of the future accelerator facility FAIR, the researchers under the direction of Professor Marika Schleberger are investigating solids using ion beams. In order to do this, a measuring station on the 17-meter-diameter ring, in which the ions fly from low speeds to a quarter of the speed of light, is being equipped with novel instruments. They are being specially developed by the project partners of the UDE and the University of Gießen. The researchers want to analyze the particles that are released during bombardment with ions in order to answer key questions: How to achieve customized changes in new materials using the targeted removal of individual atoms? In which subunits do biomolecules break under particle bombardment, and can one control this process? How can detection sensitivity be further increased?

The CRYRING is a contribution from Sweden to FAIR, which was transported from Stockholm to GSI. It was initially set up in cooperation with GSI for experiments and machine tests on the existing GSI accelerator facility. The system is planned for long-term use in atomic research with slow antiprotons at the FAIR facility.

Another project, under the direction of Dr. Katharina Ollefs deals with novel, energy-efficient cooling using magnetic materials. The previous systems damage the environment or consume a lot of electricity. Magnetocaloric materials offer an alternative: Their temperature can be altered with the use of a magnetic field. Within the framework the ULMAG project (ULtimate MAGnetic Characterization) that is currently being funded, Ollef’s Team, together with colleagues from the Technical University of Darmstadt, wants to investigate elementary and magnetic properties of materials under exactly the same conditions. The experiments will take place at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). The ESRF produces x-rays that are 100 billion times more intense than the radiation used in hospitals. “The new device at the synchrotron radiation source tracks minute changes in magnetism and structure with high precision from the direct point of view of the crucial atoms at the same time as the phase transition. From this, we are hoping to achieve groundbreaking new developments in the field of magnetocaloric materials,” explains Ollefs.

Both joint projects are funded by the Federal Ministry of Education and Research with 1.4 million euros each for a period of three years. (UDE/BP)

Cryring – exterior view
A joint project funded by the Federal Ministry of Education and Research is being implemented at the CRYRING ion storage ring on the GSI and FAIR campus in Darmstadt.
Photo: J. Hosan/GSI Helmholtzzentrum für Schwerionenforschung GmbH