50 years GSI

https://www.gsi.de/fileadmin/oeffentlichkeitsarbeit/logos/01_50_Years_GSI_RGB.png

FAIR

The new accelerator facility FAIR is under construction at GSI. Learn more.

https://www.gsi.de/fileadmin/_migrated/pics/FAIR_Logo_rgb.png

GSI is member of

https://www.gsi.de/fileadmin/oeffentlichkeitsarbeit/logos/Helmholtz-Logo_web_EN.png

Funded by

BMBFHMWKMWWKTMWWDG

Branches

HI-JenaHIM

Press releases

Subscribe to our RSS feed to get the latest news and press releases.

https://www.gsi.de/fileadmin/_migrated/pics/RSSFeed-icon_03.jpg
RSS-Feed

Search in press releases

Photo: CERN/A. Saba
The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma. Then, in a phase...



Photo: A. Zschau/GSI
Twenty years ago, researchers at GSI Helmholtzzentrum für Schwerionenforschung began to conduct clinical studies of an innovative cancer treatment that used accelerated carbon ions. In August and September 1998, the first patients were treated with a complete course of carbon therapy for a period of three weeks. It was a starting point of a success story that has led from fundamental research to a widespread medical application.



Photo: M. Laatiaoui, GSI
Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an...



Photo: J. Hosan/GSI
It’s a significant moment for the scientific work at GSI Helmholtzzentrum für Schwerionenforschung and the future accelerator center FAIR. Following a two-year break during which it underwent extensive modernization, the existing accelerator facility has been restarted very successfully and will soon be supplying researchers from around the world with a large variety of high-quality ion beams. This will mark the beginning of the experiment period scheduled for 2018, which also coincides with the...



Photo: Rosario Turrisi
The theoretical physicist Hannah Petersen has been awarded the Zimanyi Medal of the Hungarian Academy of Sciences. The award is in honor of her work on relativistic heavy ion collisions. This young researcher has been the leader of a Helmholtz Young Investigators Group at GSI Helmholtzzentrum für Schwerionenforschung since 2012 and is a professor teaching at the Goethe University in Frankfurt. Her studies are important for the work on the future accelerator center FAIR, which is currently being...



Photo: G. Otto / GSI
As of this month, the high-performance laser PHELIX at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt will have been in operation for ten years. At PHELIX, scientists from around the world have the unique opportunity to conduct experiments that combine laser beams and ion beams produced in the existing accelerator facility. This makes it possible to study extreme states of matter, such as those that occur in stars or inside large planets.



Photo: PTB
Precise time measurements play a vital role in our daily life. They allow reliable navigation and accurate experimenting and provide a basis for world-wide synchronized exchange of data. A team of researchers of PTB Braunschweig, Ludwig-Maximilians-Universität München (LMU), Johannes Gutenberg University Mainz (JGU), the Helmholtz Institute Mainz (HIM), and GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt now reports on a decisive step toward the potential development of a nuclear...



Photo: R. Grisenti
It is a spectacular low temperature: A research team headed by Robert Grisenti from GSI Helmholtzzentrum für Schwerionenforschung has successfully detected liquid water at a temperature far below the freezing point: -42.6 degrees Celsius. This discovery is the result of development work on experiments for the future accelerator center FAIR, but it could also enable us to make great progress in our understanding of the earth’s climate.



Copyright: G. Otto/GSI Helmholtzzentrum für Schwerionenforschung GmbH
One of the key questions that need to be addressed regarding the future of human spaceflight as well as robotic exploration programs is how cosmic radiation affects human beings, electronics, and materials. The detailed investigation of this topic is one of the main tasks that must be accomplished in order to provide astronauts and space systems with effective protection. To achieve this goal, the European Space Agency (ESA) will be cooperating closely in the future with the international...