The new accelerator facility FAIR is under construction at GSI. Learn more.


Funded by


News archive

Subscribe to our RSS feed to get the latest news and press releases.


Search in news archive

Photo: G. Otto/GSI
It’s light, solid and could play an important role in future space missions into the depths of space: lithium hydride, a salt-like chemical compound of lithium and hydrogen. Crucial indications for the possible suitability of lithium hydride as a shielding material against cosmic radiation have now been found by research partners in Germany and Italy.

Picture: GSI Helmholtzzentrum
At 150 years of age, every chemistry lesson still must have it: the periodic table of the elements. The table organizes all substances in the universe according to their atomic masses and chemical properties. The United Nations has declared 2019 to be the International Year of the Periodic Table of Chemical Elements. For this occasion, GSI Helmholtzzentrum für Schwerionenforschung and the Darmstadtium Science and Congress Center have published a periodic table as educational material for...

Photo: CERN
It’s an exciting field of research for physics: quark-gluon plasma, the state of matter that existed in the universe until fractions of a second after the big bang, that can be generated and studied by collisions of heavy lead ions. Experimental observations show that these collisions produce light nuclei such as deuterons, tritons and helium. Researchers, however, don’t agree on the theoretical explanation for their production.

Photo: C. Pomplun, GSI
Developed by two GSI researchers, the ROSE system (ROtating Scanner for 4-dimensional Emittance measurement) will receive funding of more than €360,000 from the LOEWE funding initiative of the State of Hesse for a period of three years from May 2019 on. The purpose of the current project is the development and system integration of a software package for ROSE. The applicant is NTG (New Technologies GmbH of Gelnhausen), a company cooperating with GSI.

Photo: G. Otto, GSI
FAIR and GSI hosted this year’s spring meeting of the International Particle Physics Outreach Group (IPPOG) in May. During three days, the international participants exchanged views on the possibilities of communicating science to the public and in particular to young people. The meeting also gave the participants an opportunity to learn more about the research program of GSI and the status of the international FAIR project, one of the largest construction projects for fundamental research in...

Picture: GSI
In April, a pilot Masterclass on particle therapy took place at GSI and FAIR, as well as at the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg and the European research center CERN in Geneva, Switzerland. School children with an age distribution spanning from 12 to 17 years were invited to immerse in the world of scientists for a day. At the end of the event they joined a common video conference to share their experiences.

Photo: G. Otto, GSI
In May, the Wirtschaftssenat of the Bundesverband mittelständische Wirtschaft, Unternehmerverband Deutschlands e.V. (BVMW) visited the FAIR/GSI campus to learn about research, the FAIR project and, in particular, the technologies and innovations available at the location. The group was accompanied by former ESA astronaut Dr. h.c. Thomas Reiter, ESA Interagency Coordinator.

Photo: M. Bernards / FAIR
Four universities in Poland and Romania now agreed to become GET_INvolved partners by listing GSI/FAIR as receiving organization for the Erasmus+ scholarship programme. Students and graduates from these universities may now apply for Erasmus+ scholarships using a simplified procedure to enable them an internship, traineeship or research stay at GSI and FAIR in Darmstadt.

Image: Andy Sproles, Oak Ridge National Laboratory, U.S. Department of Energy
An international collaboration including contributions from TU Darmstadt and the ExtreMe Matter Institute (EMMI) at GSI solved a 50-year-old puzzle that explains why beta decays of atomic nuclei are slower than what is expected based on the beta decay of free neutrons. The findings, published in the scientific journal Nature Physics, fill a long-standing gap in our understanding of beta decay, an important process in nuclear physics applications and in the synthesis of heavy elements in stars.