ISI/Scopus publications to the research unit RU4 (2013-2016)

go to main page


 1. Agodi, C., et al., FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy. Journal of physics / Conference Series, 2013. 420: p. 012061 - DOI: 10.1088/1742-6596/420/1/012061.

2. Alpat, B., et al., Total and Partial Fragmentation Cross-Section of 500 MeV/nucleon Carbon Ions on Different Target Materials. IEEE transactions on nuclear science, 2013. 60(6): p. 4673 - 4682 DOI: 10.1109/TNS.2013.2284855.

3. Alphonse, G., et al., p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or carbon ion irradiation. BMC cancer, 2013. 13(1): p. 151 - DOI: 10.1186/1471-2407-13-151.

4. Carozzo, S., et al., Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy. International journal of radiation oncology, biology, physics, 2013. 85(4): p. 978 - 983 DOI: 10.1016/j.ijrobp.2012.08.010.

5. Combs, S.E., et al., Towards clinical evidence in particle therapy: ENLIGHT, PARTNER, ULICE and beyond. Journal of radiation research, 2013. 54(suppl 1): p. i6 - i12 DOI: 10.1093/jrr/rrt039.

6. Durante, M., et al., From DNA damage to chromosome aberrations: Joining the break. Mutation research / Genetic toxicology and environmental mutagenesis, 2013. 756(1-2): p. 5 - 13 DOI: 10.1016/j.mrgentox.2013.05.014.

7. Durante, M., N. Reppingen, and K.D. Held, Immunologically augmented cancer treatment using modern radiotherapy. Trends in molecular medicine, 2013. 19(9): p. 565 - 582 DOI: 10.1016/j.molmed.2013.05.007.

8. Friedrich, T., M. Durante, and M. Scholz, Particle species dependence of cell survival RBE: Evident and not negligible. Acta oncologica / Supplement, 2013. 52(3): p. 589 - 603 DOI: 10.3109/0284186X.2013.767984.

9. Friedrich, T., et al., Sensitivity analysis of the relative biological effectiveness predicted by the local effect model. Physics in medicine and biology, 2013. 58(19): p. 6827 - 6849 DOI: 10.1088/0031-9155/58/19/6827.

10. Friedrich, T., et al., Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. Journal of radiation research, 2013. 54(3): p. 494 - 514 DOI: 10.1093/jrr/rrs114.

11. Graeff, C., et al., A 4D-optimization concept for scanned ion beam therapy. Radiotherapy and oncology, 2013. 109(3): p. 419 - 424 DOI: 10.1016/j.radonc.2013.09.018.

12. Grün, R., et al., Physical and biological factors determining the effective proton range. Medical physics, 2013. 40(11): p. 111716 DOI: 10.1118/1.4824321.

13. Haettner, E., et al., Experimental study of nuclear fragmentation of 200 and 400 MeV/ u 12 C ions in water for applications in particle therapy. Physics in medicine and biology, 2013. 58(23): p. 8265 - 8279 DOI: 10.1088/0031-9155/58/23/8265.

14. Hild, S., M. Durante, and C. Bert, Assessment of Uncertainties in Treatment Planning for Scanned Ion Beam Therapy of Moving Tumors. International journal of radiation oncology, biology, physics, 2013. 85(2): p. 528 - 535 DOI: 10.1016/j.ijrobp.2012.04.011.

15. Karger, C.P., et al., Relative Biological Effectiveness of Carbon Ions in a Rat Prostate Carcinoma In Vivo: Comparison of 1, 2, and 6 Fractions. International journal of radiation oncology, biology, physics, 2013. 86(3): p. 450 - 455 DOI: 10.1016/j.ijrobp.2013.01.019.

16. Laube, K., et al., 4D particle therapy PET simulation for moving targets irradiated with scanned ion beams. Physics in medicine and biology, 2013. 58(3): p. 513 - 533 DOI: 10.1088/0031-9155/58/3/513.

17. Loeffler, J.S. and M. Durante, Charged particle therapy—optimization, challenges and future directions. Nature reviews / Clinical oncology, 2013. 10(7): p. 411 - 424 DOI: 10.1038/nrclinonc.2013.79.

18. Loucas, B.D., et al., Chromosome Damage in Human Cells by γ Rays, α Particles and Heavy Ions: Track Interactions in Basic Dose-Response Relationships. Radiation research, 2013. 179(1): p. 9 - 20 DOI: 10.1667/RR3089.1.

19. Ma, N.-Y., et al., Influence of chronic hypoxia and radiation quality on cell survival. Journal of radiation research, 2013. 54(suppl 1): p. i13 - i22 DOI: 10.1093/jrr/rrs135.

20. Merk, B., et al., Photobleaching setup for the biological end-station of the darmstadt heavy-ion microprobe. Nuclear instruments & methods in physics research / B, 2013. 306: p. 81 - 84 DOI: 10.1016/j.nimb.2012.11.043.

21. Merz, F., et al., Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro-Oncology, 2013. 15(6): p. 670 - 681 DOI: 10.1093/neuonc/not003.

22. Meyer, B., et al., Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK. Nucleic acids symposium series, 2013. 41(12): p. 6109 - 6118 DOI: 10.1093/nar/gkt304.

23. Müller, I., et al., Species conserved DNA damage response at the inactive human X chromosome. Mutation research / Genetic toxicology and environmental mutagenesis, 2013. 756(1-2): p. 30 - 36 DOI: 10.1016/j.mrgentox.2013.04.006.

24. Obe, G., S. Ritter, and M. Durante, Chromosome aberrations, DNA damage, and risk: Matrix reloaded. Mutation research / Genetic toxicology and environmental mutagenesis, 2013. 756(1-2): p. 3 - 4 DOI: 10.1016/j.mrgentox.2013.07.002.

25. Pignalosa, D., et al., Chromosome inversions in lymphocytes of prostate cancer patients treated with X-rays and carbon ions. Radiotherapy and oncology, 2013. 109(2): p. 256 - 261 DOI: 10.1016/j.radonc.2013.09.021.

26. Richter, D., et al., 4D Treatment Dose Reconstruction for Scanned Ion Beam Therapy. International journal of radiation oncology, biology, physics, 2013. 87(2): p. S183 - DOI: 10.1016/j.ijrobp.2013.06.472.

27. Richter, D., et al., Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy. Medical physics, 2013. 40(5): p. 051722 DOI: 10.1118/1.4800802.

28. Rinaldi, I., et al., Experimental characterization of a prototype detector system for carbon ion radiography and tomography. Physics in medicine and biology, 2013. 58(3): p. 413 - 427 DOI: 10.1088/0031-9155/58/3/413.

29. Ruciński, A., et al., Preclinical investigations towards the first spacer gel application in prostate cancer treatment during particle therapy at HIT. Radiation oncology, 2013. 8(1): p. 134 - DOI: 10.1186/1748-717X-8-134.

30. Saito, N., et al., Prediction methods for synchronization of scanned ion beam tracking. Physica medica, 2013. 29(6): p. 639 - 643 DOI: 10.1016/j.ejmp.2012.08.003.

31. Schardt, D., et al., Light Flashes in Cancer Patients Treated with Heavy Ions. Brain stimulation, 2013. 6(3): p. 416 - 417 DOI: 10.1016/j.brs.2012.08.003.

32. Scifoni, E., et al., Including oxygen enhancement ratio in ion beam treatment planning: model implementation and experimental verification. Physics in medicine and biology, 2013. 58(11): p. 3871 - 3895 DOI: 10.1088/0031-9155/58/11/3871.

33. Seregni, M., et al., Tumor tracking based on correlation models in scanned ion beam therapy: an experimental study. Physics in medicine and biology, 2013. 58(13): p. 4659 - 4678 DOI: 10.1088/0031-9155/58/13/4659.

34. Singh, S.K., et al., Reduced contribution of thermally labile sugar lesions to DNA double strand break formation after exposure to heavy ions. Radiation oncology, 2013. 8(1): p. 77 - DOI: 10.1186/1748-717X-8-77.

35. Stahler, C., et al., Impact of carbon ion irradiation on epidermal growth factor receptor signaling and glioma cell migration in comparison to conventional photon irradiation. International journal of radiation biology, 2013. 89(6): p. 454 - 461 DOI: 10.3109/09553002.2013.766769.

36. Steidl, P., et al., Gating delays for two respiratory motion sensors in scanned particle radiation therapy. Physics in medicine and biology, 2013. 58(21): p. N295 - N302 DOI: 10.1088/0031-9155/58/21/N295.

37. Steinsträter, O., C. Pantev, and C. Lappe, A Beamformer Analysis of MEG Data Reveals Frontal Generators of the Musically Elicited Mismatch Negativity. PLoS one, 2013. 8(4): p. e61296 DOI: 10.1371/journal.pone.0061296.

38. Stützer, K., et al., Experimental verification of a 4D MLEM reconstruction algorithm used for in-beam PET measurements in particle therapy. Physics in medicine and biology, 2013. 58(15): p. 5085 - 5111 DOI: 10.1088/0031-9155/58/15/5085.

39. Tinganelli, W., et al., Influence of acute hypoxia and radiation quality on cell survival. Journal of radiation research, 2013. 54(suppl 1): p. i23 - i30 DOI: 10.1093/jrr/rrt065.

40. Tobias, F., et al., Spatiotemporal Dynamics of Early DNA Damage Response Proteins on Complex DNA Lesions. PLoS one, 2013. 8(2): p. e57953 - DOI: 10.1371/journal.pone.0057953.

41. Tommasino, F., et al., A DNA Double-Strand Break Kinetic Rejoining Model Based on the Local Effect Model. Radiation research, 2013. 180(5): p. 524 - 538 DOI: 10.1667/RR13389.1.

42. Varentsov, D., et al., First biological images with high-energy proton microscopy. Physica medica, 2013. 29(2): p. 208 - 213 DOI: 10.1016/j.ejmp.2012.03.002.



 1. Averbeck, N.B., et al., DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Cell cycle, 2014. 13(16): p. 2509 - 2516 DOI: 10.4161/15384101.2015.941743.

2. Bassler, N., et al., LET-painting increases tumour control probability in hypoxic tumours. Acta oncologica / Supplement, 2014. 53(1): p. 25 - 32 DOI: 10.3109/0284186X.2013.832835.

3. Batista, V., et al., Inter- and Intra-fractional Motion Robustness for Pancreatic Patients Treated With Scanned Carbon Ion Therapy, in 56th Annual Meeting of the American-Society-for-Radiation-Oncology. 2014: San Francisco, California (USA) DOI: 10.1016/j.ijrobp.2014.05.2610.

4. Beck, M., et al., Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation. International journal of molecular medicine, 2014. 4: p. 1124-32 DOI: 10.3892/ijmm.2014.1893.

5. Becker, A., et al., ATM Alters the Otherwise Robust Chromatin Mobility at Sites of DNA Double-Strand Breaks (DSBs) in Human Cells. PLoS one, 2014. 9(3): p. e92640 DOI: 10.1371/journal.pone.0092640.

6. Bert, C. and M. Durante, Particle radiosurgery: A new frontier of physics in medicine. Physica medica, 2014. 30(5): p. 535 - 538 DOI: 10.1016/j.ejmp.2014.04.011.

7. Bert, C., et al., Advances in 4D Treatment Planning for Scanned Particle Beam Therapy – Report of Dedicated Workshops. Technology in cancer research & treatment, 2014. 13(6): p. 485-95 DOI: 10.7785/tcrtexpress.2013.600274.

8. Bertrand, G., et al., Targeting Head and Neck Cancer Stem Cells to Overcome Resistance to Photon and Carbon Ion Radiation. Stem cell reviews and reports, 2014. 10(1): p. 114 - 126 DOI: 10.1007/s12015-013-9467-y.

9. Deperas-Standylo, J., E. Gudowska-Nowak, and S. Ritter, Stochastic modelling for biodosimetry: Predicting the chromosomal response to radiation at different time points after exposure. The @European physical journal / D, 2014. 68(7): p. 204 DOI: 10.1140/epjd/e2014-50014-x.

10. Durante, M., New challenges in high-energy particle radiobiology. The @British journal of radiology, 2014. 87(1035): p. 20130626 DOI: 10.1259/bjr.20130626.

11. Eley, J.G., et al., 4D optimization of scanned ion beam tracking therapy for moving tumors. Physics in medicine and biology, 2014. 59(13): p. 3431 - 3452 DOI: 10.1088/0031-9155/59/13/3431.

12. Fattori, G., et al., Dosimetric effects of residual uncertainties in carbon ion treatment of head chordoma. Radiotherapy and oncology, 2014. 113(1): p. 66 - 71 DOI: 10.1016/j.radonc.2014.08.001.

13. Fattori, G., et al., Commissioning of an Integrated Platform for Time-Resolved Treatment Delivery in Scanned Ion Beam Therapy by Means of Optical Motion Monitoring. Technology in cancer research & treatment, 2014. 13(6): p. 517 - 528 DOI: 10.7785/tcrtexpress.2013.600275.

14. Frey, K., et al., TPS PET —A TPS-based approach for in vivo dose verification with PET in proton therapy. Physics in medicine and biology, 2014. 59(1): p. 1 - 21 DOI: 10.1088/0031-9155/59/1/1.

15. Friedrich, T., M. Durante, and M. Scholz, Modeling Cell Survival after Irradiation with Ultrasoft X Rays using the Giant Loop Binary Lesion Model. Radiation research, 2014. 181(5): p. 485 - 494 DOI: 10.1667/RR13518.1.

16. Friedrich, T., et al., RBE of ion beams in hypofractionated radiotherapy (SBRT). Physica medica, 2014. 30(5): p. 588 - 591 DOI: 10.1016/j.ejmp.2014.04.009.

17. Friess, J., et al., Electrophysiologic and molecular characteristics of cardiomyocytes after heavy ion irradiation in the frame of the ESA IBER-10 program. Journal of radiation research, 2014. 55(suppl 1): p. i40 - i41 DOI: 10.1093/jrr/rrt163.

18. Graeff, C., Motion mitigation in scanned ion beam therapy through 4D-optimization. Physica medica, 2014. 30(5): p. 570 - 577 DOI: 10.1016/j.ejmp.2014.03.011.

19. Graeff, C., et al., Multigating, a 4D Optimized Beam Tracking in Scanned Ion Beam Therapy. Technology in cancer research & treatment, 2014. 13(6): p. 497 - 504 DOI: 10.7785/tcrtexpress.2013.600277.

20. Herr, L., et al., A Model of Photon Cell Killing Based on the Spatio-Temporal Clustering of DNA Damage in Higher Order Chromatin Structures. PLoS one, 2014. 9(1): p. e83923 DOI: 10.1371/journal.pone.0083923.

21. Hild, S., et al., Fast optimization and dose calculation in scanned ion beam therapy. Medical physics, 2014. 41(7): p. 071703 DOI: 10.1118/1.4881522.

22. Karger, C.P., et al., Photon and Carbon Ion Irradiation of a Rat Prostate Carcinoma: Does a Higher Fraction Number Increase the Metastatic Rate? Radiation research, 2014. 181(6): p. 623 - 628 DOI: 10.1667/RR13611.1.

23. Knopf, A., et al., Challenges of radiotherapy: Report on the 4D treatment planning workshop 2013. Physica medica, 2014. 30(7): p. 809 - 815 DOI: 10.1016/j.ejmp.2014.07.341.

24. Krämer, M., et al., Overview of recent advances in treatment planning for ion beam radiotherapy. The @European physical journal / D, 2014. 68(10): p. 306 DOI: 10.1140/epjd/e2014-40843-x.

25. Large, M., et al., A non-linear detection of phospho-histone H2AX in EA.hy926 endothelial cells following low-dose X-irradiation is modulated by reactive oxygen species. Radiation oncology, 2014. 9(1): p. 80 - DOI: 10.1186/1748-717X-9-80.

26. Luft, S., et al., The effect of X-rays and C-ions on pluripotent embryonic stem cells. Journal of radiation research, 2014. 55(suppl 1): p. i55 - i56 DOI: 10.1093/jrr/rrt175.

27. Luft, S., et al., Fate of D3 mouse embryonic stem cells exposed to X-rays or carbon ions. Mutation research / Genetic toxicology and environmental mutagenesis, 2014. 760: p. 56 - 63 DOI: 10.1016/j.mrgentox.2013.12.004.

28. Piersanti, L., et al., Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u $^{12}C$ beam. Physics in medicine and biology, 2014. 59(7): p. 1857 - 1872 DOI: 10.1088/0031-9155/59/7/1857.

29. Prall, M., et al., Ion beam tracking using ultrasound motion detection. Medical physics, 2014. 41(4): p. 041708 DOI: 10.1118/1.4868459.

30. Richter, D., et al., Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiotherapy and oncology, 2014. 113(2): p. 290 - 295 DOI: 10.1016/j.radonc.2014.11.020.

31. Richter, D., et al., Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors. International journal of radiation oncology, biology, physics, 2014. 89(1): p. 175 - 181 DOI: 10.1016/j.ijrobp.2014.01.043.

32. Saager, M., et al., Carbon Ion Irradiation of the Rat Spinal Cord: Dependence of the Relative Biological Effectiveness on Linear Energy Transfer. International journal of radiation oncology, biology, physics, 2014. 90(1): p. 63 - 70 DOI: 10.1016/j.ijrobp.2014.05.008.

33. Subtil, F.S.B., et al., Carbon ion radiotherapy of human lung cancer attenuates HIF-1 signaling and acts with considerably enhanced therapeutic efficiency. The @FASEB journal, 2014. 28(3): p. 1412 - 1421 DOI: 10.1096/fj.13-242230.

34. Tessa, C.L., et al., Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions. Physics in medicine and biology, 2014. 59(8): p. 2111 - 2125 DOI: 10.1088/0031-9155/59/8/2111.

35. Tschachojan, V., et al., Carbon ions and X‑rays induce pro‑inflammatory effects in 3D oral mucosa models with and without PBMCs. Oncology reports, 2014. 32(5): p. 1820-1828 DOI: 10.3892/or.2014.3441.

36. Wälzlein, C., et al., Low-energy electron transport in non-uniform media. Nuclear instruments & methods in physics research / B, 2014. 320: p. 75 - 82 DOI: 10.1016/j.nimb.2013.12.007.

37. Wälzlein, C., et al., Advancing the modeling in particle therapy: From track structure to treatment planning. Applied radiation and isotopes, 2014. 83: p. 171 - 176 DOI: 10.1016/j.apradiso.2013.01.019.

38. Wälzlein, C., et al., Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Physics in medicine and biology, 2014. 59(6): p. 1441 - 1458 DOI: 10.1088/0031-9155/59/6/1441.



 1. Abdollahi, E., et al., Upgrading the GSI beamline microscope with a confocal fluorescence lifetime scanner to monitor charged particle induced chromatin decondensation in living cells. Nuclear instruments & methods in physics research / B, 2015. 365: p. 626 - 630 DOI: 10.1016/j.nimb.2015.07.005.

2. Boscolo, D., et al., TLD efficiency calculations for heavy ions: an analytical approach. The @European physical journal / D, 2015. 69(12): p. 286 DOI: 10.1140/epjd/e2015-60208-3.

3. Brevet, R., et al., Treatment Parameters Optimization to Compensate for Interfractional Anatomy Variability and Intrafractional Tumor Motion. Frontiers in oncology, 2015. 5: p. 291 DOI: 10.3389/fonc.2015.00291.

4. Dettmering, T., et al., Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts. Journal of radiation research, 2015. 56(1): p. 67 - 76 DOI: 10.1093/jrr/rru083.

5. Eichhorn, A., et al., SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model. Medical physics, 2015. 42(6): p. 3198 - 3198 DOI: 10.1118/1.4923823.

6. Friedrich, T., M. Durante, and M. Scholz, Comments to the paper “Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation” by A. Mairani et al., Int. J. Radiat. Biol. 89(10), 2013, 782–793. International journal of radiation biology, 2015. 91(1): p. 127 - 128 DOI: 10.3109/09553002.2014.952459.

7. Friedrich, T., M. Durante, and M. Scholz, Simulation of DSB yield for high LET radiation. Radiation protection dosimetry, 2015. 166(1-4): p. 61 - 65 DOI: 10.1093/rpd/ncv147.

8. Frieß, J.L., et al., Electrophysiologic and cellular characteristics of cardiomyocytes after X-ray irradiation. Mutation research / Fundamental and molecular mechanisms of mutagenesis, 2015. 777: p. 1 - 10 DOI: 10.1016/j.mrfmmm.2015.03.012.

9. Gibhardt, C.S., et al., X-ray irradiation activates K$^+$ channels via H$_2$O$_2$ signaling. Scientific reports, 2015. 5: p. 13861 DOI: 10.1038/srep13861.

10. Graeff, C., et al., Administration of romosozumab improves vertebral trabecular and cortical bone as assessed with quantitative computed tomography and finite element analysis. Bone, 2015. 81: p. 364 - 369 DOI: 10.1016/j.bone.2015.07.036.

11. Grün, R., et al., Assessment of potential advantages of relevant ions for particle therapy: A model based study. Medical physics, 2015. 42(2): p. 1037 - 1047 DOI: 10.1118/1.4905374.

12. Herr, L., et al., A Comparison of Kinetic Photon Cell Survival Models. Radiation research, 2015. 184(5): p. 494 - 508 DOI: 10.1667/RR13862.1.

13. Herr, L., et al., Sensitivity of the Giant LOop Binary LEsion (GLOBLE) cell survival model on parameters characterising dose rate effects. Radiation protection dosimetry, 2015. 166(1-4): p. 56 - 60 DOI: 10.1093/rpd/ncv150.

14. Herr, L., et al., New Insight into Quantitative Modeling of DNA Double-Strand Break Rejoining. Radiation research, 2015. 184(3): p. 280 - 295 DOI: 10.1667/RR14060.1.

15. Hufnagl, A., et al., The link between cell-cycle dependent radiosensitivity and repair pathways: A model based on the local, sister-chromatid conformation dependent switch between NHEJ and HR. DNA repair, 2015. 27: p. 28 - 39 DOI: 10.1016/j.dnarep.2015.01.002.

16. Kamada, T., et al., Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. The @lancet <London> / Oncology, 2015. 16(2): p. e93 - e100 DOI: 10.1016/S1470-2045(14)70412-7.

17. Kijas, A.W., et al., ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1. Nucleic acids symposium series, 2015. 43(17): p. 8352 - 8367 DOI: 10.1093/nar/gkv754.

18. Kraft, D., et al., NF-κB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia, 2015. 29(7): p. 1543 - 1554 DOI: 10.1038/leu.2015.28.

19. Kraft, D., et al., Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure. Mutation research / Fundamental and molecular mechanisms of mutagenesis, 2015. 777: p. 43 - 51 DOI: 10.1016/j.mrfmmm.2015.04.007.

20. Krimmer, J., et al., Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations. Journal of Instrumentation, 2015. 10(01): p. P01011 - P01011 DOI: 10.1088/1748-0221/10/01/P01011.

21. Large, M., et al., Study of the anti-inflammatory effects of low-dose radiationUntersuchung der antientzündlichen Effekte von niedrigdosierter Röntgenbestrahlung. Strahlentherapie und Onkologie, 2015. 191(9): p. 742 - 749 DOI: 10.1007/s00066-015-0848-9.

22. Lehmann, H.I., et al., Atrioventricular node ablation in Langendorff-perfused porcine hearts using carbon ion particle therapy: methods and an in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias. Circulation / Arrhythmia and electrophysiology, 2015. 8(2): p. 429 - 438 DOI: 10.1161/CIRCEP.114.002436.

23. Lorat, Y., et al., Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy--the heavy burden to repair. DNA repair, 2015. 28: p. 93 - 106 DOI: 10.1016/j.dnarep.2015.01.007.

24. Maier, A., et al., Experimental setup for radon exposure and first diffusion studies using gamma spectroscopy. Nuclear instruments & methods in physics research / B, 2015. 362: p. 187 - 193 DOI: 10.1016/j.nimb.2015.09.042.

25. Mattei, I., et al., Prompt-γ production of 220 MeV/u $^{12}$C ions interacting with a PMMA target. Journal of Instrumentation, 2015. 10(10): p. P10034 - P10034 DOI: 10.1088/1748-0221/10/10/P10034.

26. Mirsch, J., et al., Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(40): p. 12396 - 12401 DOI: 10.1073/pnas.1508702112.

27. Prall, M., et al., Towards Proton Therapy and Radiography at FAIR. Journal of physics / Conference Series, 2015. 599: p. 012041 DOI: 10.1088/1742-6596/599/1/012041.

28. Prall, M., et al., Treatment of arrhythmias by external charged particle beams: a Langendorff feasibility study. Biomedizinische Technik, 2015. 60(2): p. 146-156 DOI: 10.1515/bmt-2014-0101.

29. Rall, M., et al., Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells. Frontiers in oncology, 2015. 5: p. 00250 DOI: 10.3389/fonc.2015.00250.

30. Roth, B., et al., Low-dose photon irradiation alters cell differentiation via activation of hIK channels. Pflügers Archiv, 2015. 467(8): p. 1835 - 1849 DOI: 10.1007/s00424-014-1601-4.

31. Saager, M., et al., Split dose carbon ion irradiation of the rat spinal cord: Dependence of the relative biological effectiveness on dose and linear energy transfer. Radiotherapy and oncology, 2015. 117(2): p. 358 - 363 DOI: 10.1016/j.radonc.2015.07.006.

32. Scifoni, E., Radiation biophysical aspects of charged particles: From the nanoscale to therapy. Modern physics letters / A, 2015. 30(17): p. 1540019 DOI: 10.1142/S0217732315400192.

33. Sørensen, B.S., et al., Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta oncologica / Supplement, 2015. 54(9): p. 1623 - 1630 DOI: 10.3109/0284186X.2015.1069890.

34. Steinsträter, O., et al., Integration of a model-independent interface for RBE predictions in a treatment planning system for active particle beam scanning. Physics in medicine and biology, 2015. 60(17): p. 6811 - 6831 DOI: 10.1088/0031-9155/60/17/6811.

35. Tinganelli, W., et al., Kill-painting of hypoxic tumours in charged particle therapy. Scientific reports, 2015. 5: p. 17016 DOI: 10.1038/srep17016.

36. Tommasino, F. and M. Durante, Proton Radiobiology. Cancers, 2015. 7(1): p. 353 - 381 DOI: 10.3390/cancers7010353.

37. Tommasino, F., et al., Induction and Processing of the Radiation-Induced Gamma-H2AX Signal and Its Link to the Underlying Pattern of DSB: A Combined Experimental and Modelling Study. PLoS one, 2015. 10(6): p. e0129416 DOI: 10.1371/journal.pone.0129416.

38. Tommasino, F., et al., Application of the local effect model to predict DNA double-strand break rejoining after photon and high-LET irradiation. Radiation protection dosimetry, 2015. 166(1-4): p. 66 - 70 DOI: 10.1093/rpd/ncv164.

39. Yohannes, I., et al., SU-E-T-663: Radiation Properties of a Water-Equivalent Material Formulated Using the Stoichiometric Analysis Method in Heavy Charged Particle Therapy. Medical physics, 2015. 42(6): p. 3489 - 3489 DOI: 10.1118/1.4925026.



1. Anderle, K., et al., In silico comparison of photons versus carbon ions in single fraction therapy of lung cancer. Physica medica, 2016. 32(9): p. 1118 - 1123 DOI: 10.1016/j.ejmp.2016.08.014.

2. Averbeck, N.B., et al., Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation. Frontiers in oncology, 2016. 6: p. 28 DOI: 10.3389/fonc.2016.00028.

3. Constantinescu, A., et al., Treatment Planning Studies in Patient Data With Scanned Carbon Ion Beams for Catheter-Free Ablation of Atrial Fibrillation. Journal of cardiovascular electrophysiology, 2016. 27(3): p. 335 - 344 DOI: 10.1111/jce.12888.

4. Eley, J.G., et al., Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy. International journal of radiation oncology, biology, physics, 2016. 95(1): p. 279 - 286 DOI: 10.1016/j.ijrobp.2016.02.032.

5. Ewe, A., et al., Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Delivery and Translational Research, 2016. -: p. 1-11 DOI: 10.1007/s13346-016-0306-y.

6. Friedrich, T., et al., Response to the “Letter to the Editor” by K. H. Chadwick on our Article “A Comparison of Kinetic Photon Cell Survival Models”. Radiation research, 2016. 185(4): p. 440 - 441 DOI: 10.1667/RR14387.S2.

7. Helm, A., et al., Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells. Stem Cells and Development, 2016. 25(2): p. 178 - 188 DOI: 10.1089/scd.2015.0260.

8. Helm, A., et al., The Influence of C-Ions and X-rays on Human Umbilical Vein Endothelial Cells. Frontiers in oncology, 2016. 6: p. 5, 1-10 DOI: 10.3389/fonc.2016.00005.

9. Hild, S., et al., Scanned ion beam therapy for prostate carcinoma : Comparison of single plan treatment and daily plan-adapted treatment. Strahlentherapie und Onkologie, 2016. 192(2): p. 118 - 126 DOI: 10.1007/s00066-015-0925-0.

10. Krämer, M., et al., Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical physics, 2016. 43(4): p. 1995 - 2004 DOI: 10.1118/1.4944593.

11. Lee, K.-J., et al., Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase. Nucleic acids symposium series, 2016. 44(4): p. 1732 - 1745 DOI: 10.1093/nar/gkv1499.

12. Lehmann, H.I., et al., Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Scientific reports, 2016. 6: p. 38895 - DOI: 10.1038/srep38895.

13. Lorat, Y., et al., Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiotherapy and oncology, 2016. 121(1): p. 154 - 161 DOI: 10.1016/j.radonc.2016.08.028.

14. Luft, S., et al., Ionizing Radiation Alters Human Embryonic Stem Cell Properties and Differentiation Capacity by Diminishing the Expression of Activin Receptors. Stem Cells and Development, 2016. -: p. scd.2016.0277 DOI: 10.1089/scd.2016.0277.

15. Norbury, J.W., et al., Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life sciences in space research, 2016. 8: p. 38 - 51 DOI: 10.1016/j.lssr.2016.02.001.

16. Patel, A., et al., The Influence of the CTIP Polymorphism, Q418P, on Homologous Recombination and Predisposition to Radiation-Induced Tumorigenesis (mainly rAML) in Mice. Radiation research, 2016. 186(6): p. RR14495.1 DOI: 10.1667/RR14495.1.

17. Prall, M., et al., High-energy proton imaging for biomedical applications. Scientific reports, 2016. 6: p. 27651 DOI: 10.1038/srep27651.

18. Ringbæk, T.P., et al., Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses. Physics in medicine and biology, 2016. 61(11): p. 4327 - 4341 DOI: 10.1088/0031-9155/61/11/4327.

19. Saager, M., et al., The relative biological effectiveness of carbon ion irradiations of the rat spinal cord increases linearly with LET up to 99 keV/μm. Acta oncologica / Supplement, 2016. -: p. 1 - 4 DOI: 10.1080/0284186X.2016.1250947.

20. Simoniello, P., et al., Exposure to Carbon Ions Triggers Proinflammatory Signals and Changes in Homeostasis and Epidermal Tissue Organization to a Similar Extent as Photons. Frontiers in oncology, 2016. 5: p. 00294 DOI: 10.3389/fonc.2015.00294.

21. Thangaraj, G., et al., Inflammatory effects of TNFα are counteracted by X-ray irradiation and AChE inhibition in mouse micromass cultures. Chemico-biological interactions, 2016. 259: p. S0009279716300953 DOI: 10.1016/j.cbi.2016.03.027.

22. Tommasino, F., Experimental and modelling studies for the validation of the mechanistic basis of the Local Effect Model. Il @nuovo cimento / C, 2016. 39: p. 287 DOI: 10.1393/ncc/i2016-16287-8.

23. Wölfelschneider, J., et al., Impact of fractionation and number of fields on dose homogeneity for intra-fractionally moving lung tumors using scanned carbon ion treatment. Radiotherapy and oncology, 2016. 118(3): p. 498 - 503 DOI: 10.1016/j.radonc.2015.12.011.

24. Yohannes, I., et al., Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy. Medical physics, 2016. 43(1): p. 308 - 313 DOI: 10.1118/1.4938587.

25. Yu, Z., et al., The Effect of X-Ray and Heavy Ions Radiations on Chemotherapy Refractory Tumor Cells. Frontiers in oncology, 2016. 6: p. 64 DOI: 10.3389/fonc.2016.00064.