ISI/Scopus publications to the research unit RU4 (2013-2016)

go to main page

2013

 1. Agodi, C., et al., FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy. Journal of physics / Conference Series, 2013. 420: p. 012061 - DOI: 10.1088/1742-6596/420/1/012061. http://repository.gsi.de/record/64630

http://dx.doi.org/10.1088/1742-6596/420/1/012061.

2. Alpat, B., et al., Total and Partial Fragmentation Cross-Section of 500 MeV/nucleon Carbon Ions on Different Target Materials. IEEE transactions on nuclear science, 2013. 60(6): p. 4673 - 4682 DOI: 10.1109/TNS.2013.2284855. http://repository.gsi.de/record/65519

http://dx.doi.org/10.1109/TNS.2013.2284855.

3. Alphonse, G., et al., p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or carbon ion irradiation. BMC cancer, 2013. 13(1): p. 151 - DOI: 10.1186/1471-2407-13-151. http://repository.gsi.de/record/64637

http://dx.doi.org/10.1186/1471-2407-13-151.

4. Carozzo, S., et al., Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy. International journal of radiation oncology, biology, physics, 2013. 85(4): p. 978 - 983 DOI: 10.1016/j.ijrobp.2012.08.010. http://repository.gsi.de/record/64642

http://dx.doi.org/10.1016/j.ijrobp.2012.08.010.

5. Combs, S.E., et al., Towards clinical evidence in particle therapy: ENLIGHT, PARTNER, ULICE and beyond. Journal of radiation research, 2013. 54(suppl 1): p. i6 - i12 DOI: 10.1093/jrr/rrt039. http://repository.gsi.de/record/65489

http://dx.doi.org/10.1093/jrr/rrt039.

6. Durante, M., et al., From DNA damage to chromosome aberrations: Joining the break. Mutation research / Genetic toxicology and environmental mutagenesis, 2013. 756(1-2): p. 5 - 13 DOI: 10.1016/j.mrgentox.2013.05.014. http://repository.gsi.de/record/65498

http://dx.doi.org/10.1016/j.mrgentox.2013.05.014.

7. Durante, M., N. Reppingen, and K.D. Held, Immunologically augmented cancer treatment using modern radiotherapy. Trends in molecular medicine, 2013. 19(9): p. 565 - 582 DOI: 10.1016/j.molmed.2013.05.007. http://repository.gsi.de/record/65516

http://dx.doi.org/10.1016/j.molmed.2013.05.007.

8. Friedrich, T., M. Durante, and M. Scholz, Particle species dependence of cell survival RBE: Evident and not negligible. Acta oncologica / Supplement, 2013. 52(3): p. 589 - 603 DOI: 10.3109/0284186X.2013.767984. http://repository.gsi.de/record/64631

http://dx.doi.org/10.3109/0284186X.2013.767984.

9. Friedrich, T., et al., Sensitivity analysis of the relative biological effectiveness predicted by the local effect model. Physics in medicine and biology, 2013. 58(19): p. 6827 - 6849 DOI: 10.1088/0031-9155/58/19/6827. http://repository.gsi.de/record/65507

http://dx.doi.org/10.1088/0031-9155/58/19/6827.

10. Friedrich, T., et al., Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. Journal of radiation research, 2013. 54(3): p. 494 - 514 DOI: 10.1093/jrr/rrs114. http://repository.gsi.de/record/65495

http://dx.doi.org/10.1093/jrr/rrs114.

11. Graeff, C., et al., A 4D-optimization concept for scanned ion beam therapy. Radiotherapy and oncology, 2013. 109(3): p. 419 - 424 DOI: 10.1016/j.radonc.2013.09.018. http://repository.gsi.de/record/65518

http://dx.doi.org/10.1016/j.radonc.2013.09.018.

12. Grün, R., et al., Physical and biological factors determining the effective proton range. Medical physics, 2013. 40(11): p. 111716 DOI: 10.1118/1.4824321. http://repository.gsi.de/record/65496

http://dx.doi.org/10.1118/1.4824321.

13. Haettner, E., et al., Experimental study of nuclear fragmentation of 200 and 400 MeV/ u 12 C ions in water for applications in particle therapy. Physics in medicine and biology, 2013. 58(23): p. 8265 - 8279 DOI: 10.1088/0031-9155/58/23/8265. http://repository.gsi.de/record/65470

http://dx.doi.org/10.1088/0031-9155/58/23/8265.

14. Hild, S., M. Durante, and C. Bert, Assessment of Uncertainties in Treatment Planning for Scanned Ion Beam Therapy of Moving Tumors. International journal of radiation oncology, biology, physics, 2013. 85(2): p. 528 - 535 DOI: 10.1016/j.ijrobp.2012.04.011. http://repository.gsi.de/record/65487

http://dx.doi.org/10.1016/j.ijrobp.2012.04.011.

15. Karger, C.P., et al., Relative Biological Effectiveness of Carbon Ions in a Rat Prostate Carcinoma In Vivo: Comparison of 1, 2, and 6 Fractions. International journal of radiation oncology, biology, physics, 2013. 86(3): p. 450 - 455 DOI: 10.1016/j.ijrobp.2013.01.019. http://repository.gsi.de/record/64641

http://dx.doi.org/10.1016/j.ijrobp.2013.01.019.

16. Laube, K., et al., 4D particle therapy PET simulation for moving targets irradiated with scanned ion beams. Physics in medicine and biology, 2013. 58(3): p. 513 - 533 DOI: 10.1088/0031-9155/58/3/513. http://repository.gsi.de/record/48022

http://dx.doi.org/10.1088/0031-9155/58/3/513.

17. Loeffler, J.S. and M. Durante, Charged particle therapy—optimization, challenges and future directions. Nature reviews / Clinical oncology, 2013. 10(7): p. 411 - 424 DOI: 10.1038/nrclinonc.2013.79. http://repository.gsi.de/record/65501

http://dx.doi.org/10.1038/nrclinonc.2013.79.

18. Loucas, B.D., et al., Chromosome Damage in Human Cells by γ Rays, α Particles and Heavy Ions: Track Interactions in Basic Dose-Response Relationships. Radiation research, 2013. 179(1): p. 9 - 20 DOI: 10.1667/RR3089.1. http://repository.gsi.de/record/49579

http://dx.doi.org/10.1667/RR3089.1.

19. Ma, N.-Y., et al., Influence of chronic hypoxia and radiation quality on cell survival. Journal of radiation research, 2013. 54(suppl 1): p. i13 - i22 DOI: 10.1093/jrr/rrs135. http://repository.gsi.de/record/65490

http://dx.doi.org/10.1093/jrr/rrs135.

20. Merk, B., et al., Photobleaching setup for the biological end-station of the darmstadt heavy-ion microprobe. Nuclear instruments & methods in physics research / B, 2013. 306: p. 81 - 84 DOI: 10.1016/j.nimb.2012.11.043. http://repository.gsi.de/record/65517

http://dx.doi.org/10.1016/j.nimb.2012.11.043.

21. Merz, F., et al., Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro-Oncology, 2013. 15(6): p. 670 - 681 DOI: 10.1093/neuonc/not003. http://repository.gsi.de/record/54111

http://dx.doi.org/10.1093/neuonc/not003.

22. Meyer, B., et al., Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK. Nucleic acids symposium series, 2013. 41(12): p. 6109 - 6118 DOI: 10.1093/nar/gkt304. http://repository.gsi.de/record/65521

http://dx.doi.org/10.1093/nar/gkt304.

23. Müller, I., et al., Species conserved DNA damage response at the inactive human X chromosome. Mutation research / Genetic toxicology and environmental mutagenesis, 2013. 756(1-2): p. 30 - 36 DOI: 10.1016/j.mrgentox.2013.04.006. http://repository.gsi.de/record/65499

http://dx.doi.org/10.1016/j.mrgentox.2013.04.006.

24. Obe, G., S. Ritter, and M. Durante, Chromosome aberrations, DNA damage, and risk: Matrix reloaded. Mutation research / Genetic toxicology and environmental mutagenesis, 2013. 756(1-2): p. 3 - 4 DOI: 10.1016/j.mrgentox.2013.07.002. http://repository.gsi.de/record/65500

http://dx.doi.org/10.1016/j.mrgentox.2013.07.002.

25. Pignalosa, D., et al., Chromosome inversions in lymphocytes of prostate cancer patients treated with X-rays and carbon ions. Radiotherapy and oncology, 2013. 109(2): p. 256 - 261 DOI: 10.1016/j.radonc.2013.09.021. http://repository.gsi.de/record/64629

http://dx.doi.org/10.1016/j.radonc.2013.09.021.

26. Richter, D., et al., 4D Treatment Dose Reconstruction for Scanned Ion Beam Therapy. International journal of radiation oncology, biology, physics, 2013. 87(2): p. S183 - DOI: 10.1016/j.ijrobp.2013.06.472. http://repository.gsi.de/record/64640

http://dx.doi.org/10.1016/j.ijrobp.2013.06.472.

27. Richter, D., et al., Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy. Medical physics, 2013. 40(5): p. 051722 DOI: 10.1118/1.4800802. http://repository.gsi.de/record/65497

http://dx.doi.org/10.1118/1.4800802.

28. Rinaldi, I., et al., Experimental characterization of a prototype detector system for carbon ion radiography and tomography. Physics in medicine and biology, 2013. 58(3): p. 413 - 427 DOI: 10.1088/0031-9155/58/3/413. http://repository.gsi.de/record/48023

http://dx.doi.org/10.1088/0031-9155/58/3/413.

29. Ruciński, A., et al., Preclinical investigations towards the first spacer gel application in prostate cancer treatment during particle therapy at HIT. Radiation oncology, 2013. 8(1): p. 134 - DOI: 10.1186/1748-717X-8-134. http://repository.gsi.de/record/65514

http://dx.doi.org/10.1186/1748-717X-8-134.

30. Saito, N., et al., Prediction methods for synchronization of scanned ion beam tracking. Physica medica, 2013. 29(6): p. 639 - 643 DOI: 10.1016/j.ejmp.2012.08.003. http://repository.gsi.de/record/65503

http://dx.doi.org/10.1016/j.ejmp.2012.08.003.

31. Schardt, D., et al., Light Flashes in Cancer Patients Treated with Heavy Ions. Brain stimulation, 2013. 6(3): p. 416 - 417 DOI: 10.1016/j.brs.2012.08.003. http://repository.gsi.de/record/64638

http://dx.doi.org/10.1016/j.brs.2012.08.003.

32. Scifoni, E., et al., Including oxygen enhancement ratio in ion beam treatment planning: model implementation and experimental verification. Physics in medicine and biology, 2013. 58(11): p. 3871 - 3895 DOI: 10.1088/0031-9155/58/11/3871. http://repository.gsi.de/record/65510

http://dx.doi.org/10.1088/0031-9155/58/11/3871.

33. Seregni, M., et al., Tumor tracking based on correlation models in scanned ion beam therapy: an experimental study. Physics in medicine and biology, 2013. 58(13): p. 4659 - 4678 DOI: 10.1088/0031-9155/58/13/4659. http://repository.gsi.de/record/65509

http://dx.doi.org/10.1088/0031-9155/58/13/4659.

34. Singh, S.K., et al., Reduced contribution of thermally labile sugar lesions to DNA double strand break formation after exposure to heavy ions. Radiation oncology, 2013. 8(1): p. 77 - DOI: 10.1186/1748-717X-8-77. http://repository.gsi.de/record/65515

http://dx.doi.org/10.1186/1748-717X-8-77.

35. Stahler, C., et al., Impact of carbon ion irradiation on epidermal growth factor receptor signaling and glioma cell migration in comparison to conventional photon irradiation. International journal of radiation biology, 2013. 89(6): p. 454 - 461 DOI: 10.3109/09553002.2013.766769. http://repository.gsi.de/record/64639

http://dx.doi.org/10.3109/09553002.2013.766769.

36. Steidl, P., et al., Gating delays for two respiratory motion sensors in scanned particle radiation therapy. Physics in medicine and biology, 2013. 58(21): p. N295 - N302 DOI: 10.1088/0031-9155/58/21/N295. http://repository.gsi.de/record/65506

http://dx.doi.org/10.1088/0031-9155/58/21/N295.

37. Steinsträter, O., C. Pantev, and C. Lappe, A Beamformer Analysis of MEG Data Reveals Frontal Generators of the Musically Elicited Mismatch Negativity. PLoS one, 2013. 8(4): p. e61296 DOI: 10.1371/journal.pone.0061296. http://repository.gsi.de/record/65512

http://dx.doi.org/10.1371/journal.pone.0061296.

38. Stützer, K., et al., Experimental verification of a 4D MLEM reconstruction algorithm used for in-beam PET measurements in particle therapy. Physics in medicine and biology, 2013. 58(15): p. 5085 - 5111 DOI: 10.1088/0031-9155/58/15/5085. http://repository.gsi.de/record/65508

http://dx.doi.org/10.1088/0031-9155/58/15/5085.

39. Tinganelli, W., et al., Influence of acute hypoxia and radiation quality on cell survival. Journal of radiation research, 2013. 54(suppl 1): p. i23 - i30 DOI: 10.1093/jrr/rrt065. http://repository.gsi.de/record/55505

http://dx.doi.org/10.1093/jrr/rrt065.

40. Tobias, F., et al., Spatiotemporal Dynamics of Early DNA Damage Response Proteins on Complex DNA Lesions. PLoS one, 2013. 8(2): p. e57953 - DOI: 10.1371/journal.pone.0057953. http://repository.gsi.de/record/65513

http://dx.doi.org/10.1371/journal.pone.0057953.

41. Tommasino, F., et al., A DNA Double-Strand Break Kinetic Rejoining Model Based on the Local Effect Model. Radiation research, 2013. 180(5): p. 524 - 538 DOI: 10.1667/RR13389.1. http://repository.gsi.de/record/65520

http://dx.doi.org/10.1667/RR13389.1.

42. Varentsov, D., et al., First biological images with high-energy proton microscopy. Physica medica, 2013. 29(2): p. 208 - 213 DOI: 10.1016/j.ejmp.2012.03.002. http://repository.gsi.de/record/65504

http://dx.doi.org/10.1016/j.ejmp.2012.03.002.

 

2014

 1. Averbeck, N.B., et al., DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Cell cycle, 2014. 13(16): p. 2509 - 2516 DOI: 10.4161/15384101.2015.941743. http://repository.gsi.de/record/184416

http://dx.doi.org/10.4161/15384101.2015.941743.

2. Bassler, N., et al., LET-painting increases tumour control probability in hypoxic tumours. Acta oncologica / Supplement, 2014. 53(1): p. 25 - 32 DOI: 10.3109/0284186X.2013.832835. http://repository.gsi.de/record/65523

http://dx.doi.org/10.3109/0284186X.2013.832835.

3. Batista, V., et al., Inter- and Intra-fractional Motion Robustness for Pancreatic Patients Treated With Scanned Carbon Ion Therapy, in 56th Annual Meeting of the American-Society-for-Radiation-Oncology. 2014: San Francisco, California (USA) DOI: 10.1016/j.ijrobp.2014.05.2610. http://repository.gsi.de/record/97359

http://dx.doi.org/10.1016/j.ijrobp.2014.05.2610.

4. Beck, M., et al., Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation. International journal of molecular medicine, 2014. 4: p. 1124-32 DOI: 10.3892/ijmm.2014.1893. http://repository.gsi.de/record/96115

http://dx.doi.org/10.3892/ijmm.2014.1893.

5. Becker, A., et al., ATM Alters the Otherwise Robust Chromatin Mobility at Sites of DNA Double-Strand Breaks (DSBs) in Human Cells. PLoS one, 2014. 9(3): p. e92640 DOI: 10.1371/journal.pone.0092640. http://repository.gsi.de/record/95979

http://dx.doi.org/10.1371/journal.pone.0092640.

6. Bert, C. and M. Durante, Particle radiosurgery: A new frontier of physics in medicine. Physica medica, 2014. 30(5): p. 535 - 538 DOI: 10.1016/j.ejmp.2014.04.011. http://repository.gsi.de/record/95980

http://dx.doi.org/10.1016/j.ejmp.2014.04.011.

7. Bert, C., et al., Advances in 4D Treatment Planning for Scanned Particle Beam Therapy – Report of Dedicated Workshops. Technology in cancer research & treatment, 2014. 13(6): p. 485-95 DOI: 10.7785/tcrtexpress.2013.600274. http://repository.gsi.de/record/96011

http://dx.doi.org/10.7785/tcrtexpress.2013.600274.

8. Bertrand, G., et al., Targeting Head and Neck Cancer Stem Cells to Overcome Resistance to Photon and Carbon Ion Radiation. Stem cell reviews and reports, 2014. 10(1): p. 114 - 126 DOI: 10.1007/s12015-013-9467-y. http://repository.gsi.de/record/95981

http://dx.doi.org/10.1007/s12015-013-9467-y.

9. Deperas-Standylo, J., E. Gudowska-Nowak, and S. Ritter, Stochastic modelling for biodosimetry: Predicting the chromosomal response to radiation at different time points after exposure. The @European physical journal / D, 2014. 68(7): p. 204 DOI: 10.1140/epjd/e2014-50014-x. http://repository.gsi.de/record/95982

http://dx.doi.org/10.1140/epjd/e2014-50014-x.

10. Durante, M., New challenges in high-energy particle radiobiology. The @British journal of radiology, 2014. 87(1035): p. 20130626 DOI: 10.1259/bjr.20130626. http://repository.gsi.de/record/186694

http://dx.doi.org/10.1259/bjr.20130626.

11. Eley, J.G., et al., 4D optimization of scanned ion beam tracking therapy for moving tumors. Physics in medicine and biology, 2014. 59(13): p. 3431 - 3452 DOI: 10.1088/0031-9155/59/13/3431. http://repository.gsi.de/record/96012

http://dx.doi.org/10.1088/0031-9155/59/13/3431.

12. Fattori, G., et al., Dosimetric effects of residual uncertainties in carbon ion treatment of head chordoma. Radiotherapy and oncology, 2014. 113(1): p. 66 - 71 DOI: 10.1016/j.radonc.2014.08.001. http://repository.gsi.de/record/95983

http://dx.doi.org/10.1016/j.radonc.2014.08.001.

13. Fattori, G., et al., Commissioning of an Integrated Platform for Time-Resolved Treatment Delivery in Scanned Ion Beam Therapy by Means of Optical Motion Monitoring. Technology in cancer research & treatment, 2014. 13(6): p. 517 - 528 DOI: 10.7785/tcrtexpress.2013.600275. http://repository.gsi.de/record/95838

http://dx.doi.org/10.7785/tcrtexpress.2013.600275.

14. Frey, K., et al., TPS PET —A TPS-based approach for in vivo dose verification with PET in proton therapy. Physics in medicine and biology, 2014. 59(1): p. 1 - 21 DOI: 10.1088/0031-9155/59/1/1. http://repository.gsi.de/record/95985

http://dx.doi.org/10.1088/0031-9155/59/1/1.

15. Friedrich, T., M. Durante, and M. Scholz, Modeling Cell Survival after Irradiation with Ultrasoft X Rays using the Giant Loop Binary Lesion Model. Radiation research, 2014. 181(5): p. 485 - 494 DOI: 10.1667/RR13518.1. http://repository.gsi.de/record/95987

http://dx.doi.org/10.1667/RR13518.1.

16. Friedrich, T., et al., RBE of ion beams in hypofractionated radiotherapy (SBRT). Physica medica, 2014. 30(5): p. 588 - 591 DOI: 10.1016/j.ejmp.2014.04.009. http://repository.gsi.de/record/95988

http://dx.doi.org/10.1016/j.ejmp.2014.04.009.

17. Friess, J., et al., Electrophysiologic and molecular characteristics of cardiomyocytes after heavy ion irradiation in the frame of the ESA IBER-10 program. Journal of radiation research, 2014. 55(suppl 1): p. i40 - i41 DOI: 10.1093/jrr/rrt163. http://repository.gsi.de/record/95989

http://dx.doi.org/10.1093/jrr/rrt163.

18. Graeff, C., Motion mitigation in scanned ion beam therapy through 4D-optimization. Physica medica, 2014. 30(5): p. 570 - 577 DOI: 10.1016/j.ejmp.2014.03.011. http://repository.gsi.de/record/96009

http://dx.doi.org/10.1016/j.ejmp.2014.03.011.

19. Graeff, C., et al., Multigating, a 4D Optimized Beam Tracking in Scanned Ion Beam Therapy. Technology in cancer research & treatment, 2014. 13(6): p. 497 - 504 DOI: 10.7785/tcrtexpress.2013.600277. http://repository.gsi.de/record/95837

http://dx.doi.org/10.7785/tcrtexpress.2013.600277.

20. Herr, L., et al., A Model of Photon Cell Killing Based on the Spatio-Temporal Clustering of DNA Damage in Higher Order Chromatin Structures. PLoS one, 2014. 9(1): p. e83923 DOI: 10.1371/journal.pone.0083923. http://repository.gsi.de/record/95990

http://dx.doi.org/10.1371/journal.pone.0083923.

21. Hild, S., et al., Fast optimization and dose calculation in scanned ion beam therapy. Medical physics, 2014. 41(7): p. 071703 DOI: 10.1118/1.4881522. http://repository.gsi.de/record/96010

http://dx.doi.org/10.1118/1.4881522.

22. Karger, C.P., et al., Photon and Carbon Ion Irradiation of a Rat Prostate Carcinoma: Does a Higher Fraction Number Increase the Metastatic Rate? Radiation research, 2014. 181(6): p. 623 - 628 DOI: 10.1667/RR13611.1. http://repository.gsi.de/record/95991

http://dx.doi.org/10.1667/RR13611.1.

23. Knopf, A., et al., Challenges of radiotherapy: Report on the 4D treatment planning workshop 2013. Physica medica, 2014. 30(7): p. 809 - 815 DOI: 10.1016/j.ejmp.2014.07.341. http://repository.gsi.de/record/96014

http://dx.doi.org/10.1016/j.ejmp.2014.07.341.

24. Krämer, M., et al., Overview of recent advances in treatment planning for ion beam radiotherapy. The @European physical journal / D, 2014. 68(10): p. 306 DOI: 10.1140/epjd/e2014-40843-x. http://repository.gsi.de/record/95992

http://dx.doi.org/10.1140/epjd/e2014-40843-x.

25. Large, M., et al., A non-linear detection of phospho-histone H2AX in EA.hy926 endothelial cells following low-dose X-irradiation is modulated by reactive oxygen species. Radiation oncology, 2014. 9(1): p. 80 - DOI: 10.1186/1748-717X-9-80. http://repository.gsi.de/record/95993

http://dx.doi.org/10.1186/1748-717X-9-80.

26. Luft, S., et al., The effect of X-rays and C-ions on pluripotent embryonic stem cells. Journal of radiation research, 2014. 55(suppl 1): p. i55 - i56 DOI: 10.1093/jrr/rrt175. http://repository.gsi.de/record/95995

http://dx.doi.org/10.1093/jrr/rrt175.

27. Luft, S., et al., Fate of D3 mouse embryonic stem cells exposed to X-rays or carbon ions. Mutation research / Genetic toxicology and environmental mutagenesis, 2014. 760: p. 56 - 63 DOI: 10.1016/j.mrgentox.2013.12.004. http://repository.gsi.de/record/95996

http://dx.doi.org/10.1016/j.mrgentox.2013.12.004.

28. Piersanti, L., et al., Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u $^{12}C$ beam. Physics in medicine and biology, 2014. 59(7): p. 1857 - 1872 DOI: 10.1088/0031-9155/59/7/1857. http://repository.gsi.de/record/95997

http://dx.doi.org/10.1088/0031-9155/59/7/1857.

29. Prall, M., et al., Ion beam tracking using ultrasound motion detection. Medical physics, 2014. 41(4): p. 041708 DOI: 10.1118/1.4868459. http://repository.gsi.de/record/96013

http://dx.doi.org/10.1118/1.4868459.

30. Richter, D., et al., Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiotherapy and oncology, 2014. 113(2): p. 290 - 295 DOI: 10.1016/j.radonc.2014.11.020. http://repository.gsi.de/record/95998

http://dx.doi.org/10.1016/j.radonc.2014.11.020.

31. Richter, D., et al., Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors. International journal of radiation oncology, biology, physics, 2014. 89(1): p. 175 - 181 DOI: 10.1016/j.ijrobp.2014.01.043. http://repository.gsi.de/record/95999

http://dx.doi.org/10.1016/j.ijrobp.2014.01.043.

32. Saager, M., et al., Carbon Ion Irradiation of the Rat Spinal Cord: Dependence of the Relative Biological Effectiveness on Linear Energy Transfer. International journal of radiation oncology, biology, physics, 2014. 90(1): p. 63 - 70 DOI: 10.1016/j.ijrobp.2014.05.008. http://repository.gsi.de/record/96001

http://dx.doi.org/10.1016/j.ijrobp.2014.05.008.

33. Subtil, F.S.B., et al., Carbon ion radiotherapy of human lung cancer attenuates HIF-1 signaling and acts with considerably enhanced therapeutic efficiency. The @FASEB journal, 2014. 28(3): p. 1412 - 1421 DOI: 10.1096/fj.13-242230. http://repository.gsi.de/record/96002

http://dx.doi.org/10.1096/fj.13-242230.

34. Tessa, C.L., et al., Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions. Physics in medicine and biology, 2014. 59(8): p. 2111 - 2125 DOI: 10.1088/0031-9155/59/8/2111. http://repository.gsi.de/record/95994

http://dx.doi.org/10.1088/0031-9155/59/8/2111.

35. Tschachojan, V., et al., Carbon ions and X‑rays induce pro‑inflammatory effects in 3D oral mucosa models with and without PBMCs. Oncology reports, 2014. 32(5): p. 1820-1828 DOI: 10.3892/or.2014.3441. http://repository.gsi.de/record/83500

http://dx.doi.org/10.3892/or.2014.3441.

36. Wälzlein, C., et al., Low-energy electron transport in non-uniform media. Nuclear instruments & methods in physics research / B, 2014. 320: p. 75 - 82 DOI: 10.1016/j.nimb.2013.12.007. http://repository.gsi.de/record/96003

http://dx.doi.org/10.1016/j.nimb.2013.12.007.

37. Wälzlein, C., et al., Advancing the modeling in particle therapy: From track structure to treatment planning. Applied radiation and isotopes, 2014. 83: p. 171 - 176 DOI: 10.1016/j.apradiso.2013.01.019. http://repository.gsi.de/record/96005

http://dx.doi.org/10.1016/j.apradiso.2013.01.019.

38. Wälzlein, C., et al., Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Physics in medicine and biology, 2014. 59(6): p. 1441 - 1458 DOI: 10.1088/0031-9155/59/6/1441. http://repository.gsi.de/record/65673

http://dx.doi.org/10.1088/0031-9155/59/6/1441.

 

2015

 1. Abdollahi, E., et al., Upgrading the GSI beamline microscope with a confocal fluorescence lifetime scanner to monitor charged particle induced chromatin decondensation in living cells. Nuclear instruments & methods in physics research / B, 2015. 365: p. 626 - 630 DOI: 10.1016/j.nimb.2015.07.005. http://repository.gsi.de/record/184343

http://dx.doi.org/10.1016/j.nimb.2015.07.005.

2. Boscolo, D., et al., TLD efficiency calculations for heavy ions: an analytical approach. The @European physical journal / D, 2015. 69(12): p. 286 DOI: 10.1140/epjd/e2015-60208-3. http://repository.gsi.de/record/184342

http://dx.doi.org/10.1140/epjd/e2015-60208-3.

3. Brevet, R., et al., Treatment Parameters Optimization to Compensate for Interfractional Anatomy Variability and Intrafractional Tumor Motion. Frontiers in oncology, 2015. 5: p. 291 DOI: 10.3389/fonc.2015.00291. http://repository.gsi.de/record/184387

http://dx.doi.org/10.3389/fonc.2015.00291.

4. Dettmering, T., et al., Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts. Journal of radiation research, 2015. 56(1): p. 67 - 76 DOI: 10.1093/jrr/rru083. http://repository.gsi.de/record/184401

http://dx.doi.org/10.1093/jrr/rru083.

5. Eichhorn, A., et al., SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model. Medical physics, 2015. 42(6): p. 3198 - 3198 DOI: 10.1118/1.4923823. http://repository.gsi.de/record/184397

http://dx.doi.org/10.1118/1.4923823.

6. Friedrich, T., M. Durante, and M. Scholz, Comments to the paper “Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation” by A. Mairani et al., Int. J. Radiat. Biol. 89(10), 2013, 782–793. International journal of radiation biology, 2015. 91(1): p. 127 - 128 DOI: 10.3109/09553002.2014.952459. http://repository.gsi.de/record/95986

http://dx.doi.org/10.3109/09553002.2014.952459.

7. Friedrich, T., M. Durante, and M. Scholz, Simulation of DSB yield for high LET radiation. Radiation protection dosimetry, 2015. 166(1-4): p. 61 - 65 DOI: 10.1093/rpd/ncv147. http://repository.gsi.de/record/184341

http://dx.doi.org/10.1093/rpd/ncv147.

8. Frieß, J.L., et al., Electrophysiologic and cellular characteristics of cardiomyocytes after X-ray irradiation. Mutation research / Fundamental and molecular mechanisms of mutagenesis, 2015. 777: p. 1 - 10 DOI: 10.1016/j.mrfmmm.2015.03.012. http://repository.gsi.de/record/184340

http://dx.doi.org/10.1016/j.mrfmmm.2015.03.012.

9. Gibhardt, C.S., et al., X-ray irradiation activates K$^+$ channels via H$_2$O$_2$ signaling. Scientific reports, 2015. 5: p. 13861 DOI: 10.1038/srep13861. http://repository.gsi.de/record/184339

http://dx.doi.org/10.1038/srep13861.

10. Graeff, C., et al., Administration of romosozumab improves vertebral trabecular and cortical bone as assessed with quantitative computed tomography and finite element analysis. Bone, 2015. 81: p. 364 - 369 DOI: 10.1016/j.bone.2015.07.036. http://repository.gsi.de/record/184395

http://dx.doi.org/10.1016/j.bone.2015.07.036.

11. Grün, R., et al., Assessment of potential advantages of relevant ions for particle therapy: A model based study. Medical physics, 2015. 42(2): p. 1037 - 1047 DOI: 10.1118/1.4905374. http://repository.gsi.de/record/184338

http://dx.doi.org/10.1118/1.4905374.

12. Herr, L., et al., A Comparison of Kinetic Photon Cell Survival Models. Radiation research, 2015. 184(5): p. 494 - 508 DOI: 10.1667/RR13862.1. http://repository.gsi.de/record/184335

http://dx.doi.org/10.1667/RR13862.1.

13. Herr, L., et al., Sensitivity of the Giant LOop Binary LEsion (GLOBLE) cell survival model on parameters characterising dose rate effects. Radiation protection dosimetry, 2015. 166(1-4): p. 56 - 60 DOI: 10.1093/rpd/ncv150. http://repository.gsi.de/record/184336

http://dx.doi.org/10.1093/rpd/ncv150.

14. Herr, L., et al., New Insight into Quantitative Modeling of DNA Double-Strand Break Rejoining. Radiation research, 2015. 184(3): p. 280 - 295 DOI: 10.1667/RR14060.1. http://repository.gsi.de/record/184334

http://dx.doi.org/10.1667/RR14060.1.

15. Hufnagl, A., et al., The link between cell-cycle dependent radiosensitivity and repair pathways: A model based on the local, sister-chromatid conformation dependent switch between NHEJ and HR. DNA repair, 2015. 27: p. 28 - 39 DOI: 10.1016/j.dnarep.2015.01.002. http://repository.gsi.de/record/184333

http://dx.doi.org/10.1016/j.dnarep.2015.01.002.

16. Kamada, T., et al., Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. The @lancet <London> / Oncology, 2015. 16(2): p. e93 - e100 DOI: 10.1016/S1470-2045(14)70412-7. http://repository.gsi.de/record/184331

http://dx.doi.org/10.1016/S1470-2045(14)70412-7.

17. Kijas, A.W., et al., ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1. Nucleic acids symposium series, 2015. 43(17): p. 8352 - 8367 DOI: 10.1093/nar/gkv754. http://repository.gsi.de/record/184330

http://dx.doi.org/10.1093/nar/gkv754.

18. Kraft, D., et al., NF-κB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia, 2015. 29(7): p. 1543 - 1554 DOI: 10.1038/leu.2015.28. http://repository.gsi.de/record/184329

http://dx.doi.org/10.1038/leu.2015.28.

19. Kraft, D., et al., Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure. Mutation research / Fundamental and molecular mechanisms of mutagenesis, 2015. 777: p. 43 - 51 DOI: 10.1016/j.mrfmmm.2015.04.007. http://repository.gsi.de/record/108748

http://dx.doi.org/10.1016/j.mrfmmm.2015.04.007.

20. Krimmer, J., et al., Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations. Journal of Instrumentation, 2015. 10(01): p. P01011 - P01011 DOI: 10.1088/1748-0221/10/01/P01011. http://repository.gsi.de/record/184429

http://dx.doi.org/10.1088/1748-0221/10/01/P01011.

21. Large, M., et al., Study of the anti-inflammatory effects of low-dose radiationUntersuchung der antientzündlichen Effekte von niedrigdosierter Röntgenbestrahlung. Strahlentherapie und Onkologie, 2015. 191(9): p. 742 - 749 DOI: 10.1007/s00066-015-0848-9. http://repository.gsi.de/record/184403

http://dx.doi.org/10.1007/s00066-015-0848-9.

22. Lehmann, H.I., et al., Atrioventricular node ablation in Langendorff-perfused porcine hearts using carbon ion particle therapy: methods and an in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias. Circulation / Arrhythmia and electrophysiology, 2015. 8(2): p. 429 - 438 DOI: 10.1161/CIRCEP.114.002436. http://repository.gsi.de/record/184327

http://dx.doi.org/10.1161/CIRCEP.114.002436.

23. Lorat, Y., et al., Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy--the heavy burden to repair. DNA repair, 2015. 28: p. 93 - 106 DOI: 10.1016/j.dnarep.2015.01.007. http://repository.gsi.de/record/184415

http://dx.doi.org/10.1016/j.dnarep.2015.01.007.

24. Maier, A., et al., Experimental setup for radon exposure and first diffusion studies using gamma spectroscopy. Nuclear instruments & methods in physics research / B, 2015. 362: p. 187 - 193 DOI: 10.1016/j.nimb.2015.09.042. http://repository.gsi.de/record/184326

http://dx.doi.org/10.1016/j.nimb.2015.09.042.

25. Mattei, I., et al., Prompt-γ production of 220 MeV/u $^{12}$C ions interacting with a PMMA target. Journal of Instrumentation, 2015. 10(10): p. P10034 - P10034 DOI: 10.1088/1748-0221/10/10/P10034. http://repository.gsi.de/record/184430

http://dx.doi.org/10.1088/1748-0221/10/10/P10034.

26. Mirsch, J., et al., Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(40): p. 12396 - 12401 DOI: 10.1073/pnas.1508702112. http://repository.gsi.de/record/184346

http://dx.doi.org/10.1073/pnas.1508702112.

27. Prall, M., et al., Towards Proton Therapy and Radiography at FAIR. Journal of physics / Conference Series, 2015. 599: p. 012041 DOI: 10.1088/1742-6596/599/1/012041. http://repository.gsi.de/record/184399

http://dx.doi.org/10.1088/1742-6596/599/1/012041.

28. Prall, M., et al., Treatment of arrhythmias by external charged particle beams: a Langendorff feasibility study. Biomedizinische Technik, 2015. 60(2): p. 146-156 DOI: 10.1515/bmt-2014-0101. http://repository.gsi.de/record/184324

http://dx.doi.org/10.1515/bmt-2014-0101.

29. Rall, M., et al., Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells. Frontiers in oncology, 2015. 5: p. 00250 DOI: 10.3389/fonc.2015.00250. http://repository.gsi.de/record/184323

http://dx.doi.org/10.3389/fonc.2015.00250.

30. Roth, B., et al., Low-dose photon irradiation alters cell differentiation via activation of hIK channels. Pflügers Archiv, 2015. 467(8): p. 1835 - 1849 DOI: 10.1007/s00424-014-1601-4. http://repository.gsi.de/record/96000

http://dx.doi.org/10.1007/s00424-014-1601-4.

31. Saager, M., et al., Split dose carbon ion irradiation of the rat spinal cord: Dependence of the relative biological effectiveness on dose and linear energy transfer. Radiotherapy and oncology, 2015. 117(2): p. 358 - 363 DOI: 10.1016/j.radonc.2015.07.006. http://repository.gsi.de/record/184322

http://dx.doi.org/10.1016/j.radonc.2015.07.006.

32. Scifoni, E., Radiation biophysical aspects of charged particles: From the nanoscale to therapy. Modern physics letters / A, 2015. 30(17): p. 1540019 DOI: 10.1142/S0217732315400192. http://repository.gsi.de/record/184321

http://dx.doi.org/10.1142/S0217732315400192.

33. Sørensen, B.S., et al., Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta oncologica / Supplement, 2015. 54(9): p. 1623 - 1630 DOI: 10.3109/0284186X.2015.1069890. http://repository.gsi.de/record/184320

http://dx.doi.org/10.3109/0284186X.2015.1069890.

34. Steinsträter, O., et al., Integration of a model-independent interface for RBE predictions in a treatment planning system for active particle beam scanning. Physics in medicine and biology, 2015. 60(17): p. 6811 - 6831 DOI: 10.1088/0031-9155/60/17/6811. http://repository.gsi.de/record/184319

http://dx.doi.org/10.1088/0031-9155/60/17/6811.

35. Tinganelli, W., et al., Kill-painting of hypoxic tumours in charged particle therapy. Scientific reports, 2015. 5: p. 17016 DOI: 10.1038/srep17016. http://repository.gsi.de/record/184318

http://dx.doi.org/10.1038/srep17016.

36. Tommasino, F. and M. Durante, Proton Radiobiology. Cancers, 2015. 7(1): p. 353 - 381 DOI: 10.3390/cancers7010353. http://repository.gsi.de/record/184317

http://dx.doi.org/10.3390/cancers7010353.

37. Tommasino, F., et al., Induction and Processing of the Radiation-Induced Gamma-H2AX Signal and Its Link to the Underlying Pattern of DSB: A Combined Experimental and Modelling Study. PLoS one, 2015. 10(6): p. e0129416 DOI: 10.1371/journal.pone.0129416. http://repository.gsi.de/record/184316

http://dx.doi.org/10.1371/journal.pone.0129416.

38. Tommasino, F., et al., Application of the local effect model to predict DNA double-strand break rejoining after photon and high-LET irradiation. Radiation protection dosimetry, 2015. 166(1-4): p. 66 - 70 DOI: 10.1093/rpd/ncv164. http://repository.gsi.de/record/184314

http://dx.doi.org/10.1093/rpd/ncv164.

39. Yohannes, I., et al., SU-E-T-663: Radiation Properties of a Water-Equivalent Material Formulated Using the Stoichiometric Analysis Method in Heavy Charged Particle Therapy. Medical physics, 2015. 42(6): p. 3489 - 3489 DOI: 10.1118/1.4925026. http://repository.gsi.de/record/184398

http://dx.doi.org/10.1118/1.4925026.

 

2016

1. Anderle, K., et al., In silico comparison of photons versus carbon ions in single fraction therapy of lung cancer. Physica medica, 2016. 32(9): p. 1118 - 1123 DOI: 10.1016/j.ejmp.2016.08.014. http://repository.gsi.de/record/200571

http://dx.doi.org/10.1016/j.ejmp.2016.08.014.

2. Averbeck, N.B., et al., Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation. Frontiers in oncology, 2016. 6: p. 28 DOI: 10.3389/fonc.2016.00028. http://repository.gsi.de/record/184707

http://dx.doi.org/10.3389/fonc.2016.00028.

3. Constantinescu, A., et al., Treatment Planning Studies in Patient Data With Scanned Carbon Ion Beams for Catheter-Free Ablation of Atrial Fibrillation. Journal of cardiovascular electrophysiology, 2016. 27(3): p. 335 - 344 DOI: 10.1111/jce.12888. http://repository.gsi.de/record/184388

http://dx.doi.org/10.1111/jce.12888.

4. Eley, J.G., et al., Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy. International journal of radiation oncology, biology, physics, 2016. 95(1): p. 279 - 286 DOI: 10.1016/j.ijrobp.2016.02.032. http://repository.gsi.de/record/186985

http://dx.doi.org/10.1016/j.ijrobp.2016.02.032.

5. Ewe, A., et al., Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Delivery and Translational Research, 2016. -: p. 1-11 DOI: 10.1007/s13346-016-0306-y. http://repository.gsi.de/record/199165

http://dx.doi.org/10.1007/s13346-016-0306-y.

6. Friedrich, T., et al., Response to the “Letter to the Editor” by K. H. Chadwick on our Article “A Comparison of Kinetic Photon Cell Survival Models”. Radiation research, 2016. 185(4): p. 440 - 441 DOI: 10.1667/RR14387.S2. http://repository.gsi.de/record/186984

http://dx.doi.org/10.1667/RR14387.S2.

7. Helm, A., et al., Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells. Stem Cells and Development, 2016. 25(2): p. 178 - 188 DOI: 10.1089/scd.2015.0260. http://repository.gsi.de/record/184337

http://dx.doi.org/10.1089/scd.2015.0260.

8. Helm, A., et al., The Influence of C-Ions and X-rays on Human Umbilical Vein Endothelial Cells. Frontiers in oncology, 2016. 6: p. 5, 1-10 DOI: 10.3389/fonc.2016.00005. http://repository.gsi.de/record/184466

http://dx.doi.org/10.3389/fonc.2016.00005.

9. Hild, S., et al., Scanned ion beam therapy for prostate carcinoma : Comparison of single plan treatment and daily plan-adapted treatment. Strahlentherapie und Onkologie, 2016. 192(2): p. 118 - 126 DOI: 10.1007/s00066-015-0925-0. http://repository.gsi.de/record/184394

http://dx.doi.org/10.1007/s00066-015-0925-0.

10. Krämer, M., et al., Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical physics, 2016. 43(4): p. 1995 - 2004 DOI: 10.1118/1.4944593. http://repository.gsi.de/record/186465

http://dx.doi.org/10.1118/1.4944593.

11. Lee, K.-J., et al., Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase. Nucleic acids symposium series, 2016. 44(4): p. 1732 - 1745 DOI: 10.1093/nar/gkv1499. http://repository.gsi.de/record/184414

http://dx.doi.org/10.1093/nar/gkv1499.

12. Lehmann, H.I., et al., Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Scientific reports, 2016. 6: p. 38895 - DOI: 10.1038/srep38895. http://repository.gsi.de/record/200678

http://dx.doi.org/10.1038/srep38895.

13. Lorat, Y., et al., Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiotherapy and oncology, 2016. 121(1): p. 154 - 161 DOI: 10.1016/j.radonc.2016.08.028. http://repository.gsi.de/record/200578

http://dx.doi.org/10.1016/j.radonc.2016.08.028.

14. Luft, S., et al., Ionizing Radiation Alters Human Embryonic Stem Cell Properties and Differentiation Capacity by Diminishing the Expression of Activin Receptors. Stem Cells and Development, 2016. -: p. scd.2016.0277 DOI: 10.1089/scd.2016.0277. http://repository.gsi.de/record/200723

http://dx.doi.org/10.1089/scd.2016.0277.

15. Norbury, J.W., et al., Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life sciences in space research, 2016. 8: p. 38 - 51 DOI: 10.1016/j.lssr.2016.02.001. http://repository.gsi.de/record/200885

http://dx.doi.org/10.1016/j.lssr.2016.02.001.

16. Patel, A., et al., The Influence of the CTIP Polymorphism, Q418P, on Homologous Recombination and Predisposition to Radiation-Induced Tumorigenesis (mainly rAML) in Mice. Radiation research, 2016. 186(6): p. RR14495.1 DOI: 10.1667/RR14495.1. http://repository.gsi.de/record/200568

http://dx.doi.org/10.1667/RR14495.1.

17. Prall, M., et al., High-energy proton imaging for biomedical applications. Scientific reports, 2016. 6: p. 27651 DOI: 10.1038/srep27651. http://repository.gsi.de/record/200573

http://dx.doi.org/10.1038/srep27651.

18. Ringbæk, T.P., et al., Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses. Physics in medicine and biology, 2016. 61(11): p. 4327 - 4341 DOI: 10.1088/0031-9155/61/11/4327. http://repository.gsi.de/record/187038

http://dx.doi.org/10.1088/0031-9155/61/11/4327.

19. Saager, M., et al., The relative biological effectiveness of carbon ion irradiations of the rat spinal cord increases linearly with LET up to 99 keV/μm. Acta oncologica / Supplement, 2016. -: p. 1 - 4 DOI: 10.1080/0284186X.2016.1250947. http://repository.gsi.de/record/199173

http://dx.doi.org/10.1080/0284186X.2016.1250947.

20. Simoniello, P., et al., Exposure to Carbon Ions Triggers Proinflammatory Signals and Changes in Homeostasis and Epidermal Tissue Organization to a Similar Extent as Photons. Frontiers in oncology, 2016. 5: p. 00294 DOI: 10.3389/fonc.2015.00294. http://repository.gsi.de/record/184248

http://dx.doi.org/10.3389/fonc.2015.00294.

21. Thangaraj, G., et al., Inflammatory effects of TNFα are counteracted by X-ray irradiation and AChE inhibition in mouse micromass cultures. Chemico-biological interactions, 2016. 259: p. S0009279716300953 DOI: 10.1016/j.cbi.2016.03.027. http://repository.gsi.de/record/186978

http://dx.doi.org/10.1016/j.cbi.2016.03.027.

22. Tommasino, F., Experimental and modelling studies for the validation of the mechanistic basis of the Local Effect Model. Il @nuovo cimento / C, 2016. 39: p. 287 DOI: 10.1393/ncc/i2016-16287-8. http://repository.gsi.de/record/200970

http://dx.doi.org/10.1393/ncc/i2016-16287-8.

23. Wölfelschneider, J., et al., Impact of fractionation and number of fields on dose homogeneity for intra-fractionally moving lung tumors using scanned carbon ion treatment. Radiotherapy and oncology, 2016. 118(3): p. 498 - 503 DOI: 10.1016/j.radonc.2015.12.011. http://repository.gsi.de/record/200584

http://dx.doi.org/10.1016/j.radonc.2015.12.011.

24. Yohannes, I., et al., Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy. Medical physics, 2016. 43(1): p. 308 - 313 DOI: 10.1118/1.4938587. http://repository.gsi.de/record/184404

http://dx.doi.org/10.1118/1.4938587.

25. Yu, Z., et al., The Effect of X-Ray and Heavy Ions Radiations on Chemotherapy Refractory Tumor Cells. Frontiers in oncology, 2016. 6: p. 64 DOI: 10.3389/fonc.2016.00064. http://repository.gsi.de/record/189554

http://dx.doi.org/10.3389/fonc.2016.00064.