ISI/Scopus publications to the research unit RU3 (2013-2016)

go to main page

2013

1. Afra, B., et al., SAXS investigations of the morphology of swift heavy ion tracks in α-quartz. Journal of physics / Condensed matter, 2013. 25(4): p. 045006 DOI: 10.1088/0953-8984/25/4/045006. http://repository.gsi.de/record/65685

http://dx.doi.org/10.1088/0953-8984/25/4/045006.

2. Ali, M., et al., Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries. Chemical communications, 2013. 49(78): p. 8770 DOI: 10.1039/c3cc45318a. http://repository.gsi.de/record/65693

http://dx.doi.org/10.1039/c3cc45318a.

3. Ali, M., et al., Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The @journal of physical chemistry <Washington, DC> / C, 2013. 117(35): p. 18234 - 18242 DOI: 10.1021/jp4054555. http://repository.gsi.de/record/65697

http://dx.doi.org/10.1021/jp4054555.

4. Amaro, P., et al., Absolute measurements and simulations of x-ray line energies of highly charged ions with a double-crystal spectrometer. Physica scripta, 2013. T156: p. 014104 DOI: 10.1088/0031-8949/2013/T156/014104. http://repository.gsi.de/record/64798

http://dx.doi.org/10.1088/0031-8949/2013/T156/014104.

5. Andelkovic, Z., et al., Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions. Physical review / A, 2013. 87(3): p. 033423 DOI: 10.1103/PhysRevA.87.033423. http://repository.gsi.de/record/51812

http://dx.doi.org/10.1103/PhysRevA.87.033423.

6. Artemyev, A.N., et al., Ab initio calculations of the $2p_{3/2}-2p_{1/2}$ fine-structure splitting in boronlike ions. Physical review / A, 2013. 88(3): p. 032518 DOI: 10.1103/PhysRevA.88.032518. http://repository.gsi.de/record/55467

http://dx.doi.org/10.1103/PhysRevA.88.032518.

7. Atanasov, D.R., et al., Half-life measurements of highly charged radionuclides. Physica scripta, 2013. T156: p. 014026 DOI: 10.1088/0031-8949/2013/T156/014026. http://repository.gsi.de/record/54909

http://dx.doi.org/10.1088/0031-8949/2013/T156/014026.

8. Aurand, B., et al., Preparation and characterization of nanometer-thin freestanding polymer foils for laser-ion acceleration. Journal of polymer science / B, 2013. 51(18): p. 1355 - 1360 DOI: 10.1002/polb.23340. http://repository.gsi.de/record/65817

http://dx.doi.org/10.1002/polb.23340.

9. Aurand, B., et al., Radiation pressure-assisted acceleration of ions using multi-component foils in high-intensity laser–matter interactions. New journal of physics, 2013. 15(3): p. 033031 DOI: 10.1088/1367-2630/15/3/033031. http://repository.gsi.de/record/54274

http://dx.doi.org/10.1088/1367-2630/15/3/033031.

10. Baker, K., et al., The quest for axions and other new light particles. Annalen der Physik, 2013. 525(6): p. A93 - A99 DOI: 10.1002/andp.201300727. http://repository.gsi.de/record/65819

http://dx.doi.org/10.1002/andp.201300727.

11. Banaś, D., et al., Two-photon energy distribution from the decay of the $2 ^{1}S_{0}$ state in He-like uranium. Physical review / A, 2013. 87(6): p. 062510 DOI: 10.1103/PhysRevA.87.062510. http://repository.gsi.de/record/53842

http://dx.doi.org/10.1103/PhysRevA.87.062510.

12. Banaś, D., et al., K-shell differential radiative recombination rates for bare uranium ions interacting with low-energy electrons. Physica scripta, 2013. T156: p. 014045 - DOI: 10.1088/0031-8949/2013/T156/014045. http://repository.gsi.de/record/54931

http://dx.doi.org/10.1088/0031-8949/2013/T156/014045.

13. Banaś, D., et al., Differential L-shell radiative recombination rate coefficients for bare uranium ions interacting with low-energy electrons. European physical journal special topics, 2013. 222(9): p. 2317 - 2322 DOI: 10.1140/epjst/e2013-02011-2. http://repository.gsi.de/record/55490

http://dx.doi.org/10.1140/epjst/e2013-02011-2.

14. Banerjee, S., et al., Temperature dependent emission and absorption cross section of $Yb^{3+}$ doped yttrium lanthanum oxide (YLO) ceramic and its application in diode pumped amplifier. Optics express, 2013. 21(S4): p. A726 - DOI: 10.1364/OE.21.00A726. http://repository.gsi.de/record/65826

http://dx.doi.org/10.1364/OE.21.00A726.

15. Belliard, L., et al., Vibrational response of free standing single copper nanowire through transient reflectivity microscopy. Journal of applied physics, 2013. 114(19): p. 193509 DOI: 10.1063/1.4831957. http://repository.gsi.de/record/65689

http://dx.doi.org/10.1063/1.4831957.

16. Blaum, K., J. Dilling, and W. Nörtershäuser, Precision atomic physics techniques for nuclear physics with radioactive beams. Physica scripta, 2013. T152: p. 014017 - DOI: 10.1088/0031-8949/2013/T152/014017. http://repository.gsi.de/record/51816

http://dx.doi.org/10.1088/0031-8949/2013/T152/014017.

17. Blumenhagen, K.-H., et al., Fully digital readout of segmented solid state detectors. Physica scripta, 2013. T156: p. 014102 - DOI: 10.1088/0031-8949/2013/T156/014102. http://repository.gsi.de/record/54923

http://dx.doi.org/10.1088/0031-8949/2013/T156/014102.

18. Bosch, F., et al., Beta decay of highly charged ions. Physica scripta, 2013. T156: p. 014025 DOI: 10.1088/0031-8949/2013/T156/014025. http://repository.gsi.de/record/54899

http://dx.doi.org/10.1088/0031-8949/2013/T156/014025.

19. Bosch, F. and Y. Litvinov, Mass and lifetime measurements at the experimental storage ring of GSI. International journal of mass spectrometry, 2013. 349-350: p. 151 - 161 DOI: 10.1016/j.ijms.2013.04.025. http://repository.gsi.de/record/54872

http://dx.doi.org/10.1016/j.ijms.2013.04.025.

20. Bosch, F., Y.A. Litvinov, and T. Stöhlker, Nuclear physics with unstable ions at storage rings. Progress in particle and nuclear physics, 2013. 73: p. 84 - 140 DOI: 10.1016/j.ppnp.2013.07.002. http://repository.gsi.de/record/54928

http://dx.doi.org/10.1016/j.ppnp.2013.07.002.

21. Brambilla, N., F. Karbstein, and A. Vairo, Symmetries of the three-heavy-quark system and the color-singlet static energy at next-to-next-to-leading logarithmic order. Physical review / D, 2013. 87(7): p. 074014 DOI: 10.1103/PhysRevD.87.074014. http://repository.gsi.de/record/65832

http://dx.doi.org/10.1103/PhysRevD.87.074014.

22. Brandau, C., et al., Probing nuclear properties by resonant atomic collisions between electrons and ions. Physica scripta, 2013. T156: p. 014050 DOI: 10.1088/0031-8949/2013/T156/014050. http://repository.gsi.de/record/54924

http://dx.doi.org/10.1088/0031-8949/2013/T156/014050.

23. Busold, S., et al., Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source. Physical review / Special topics / Accelerators and beams, 2013. 16(10): p. 101302 DOI: 10.1103/PhysRevSTAB.16.101302. http://repository.gsi.de/record/65429

http://dx.doi.org/10.1103/PhysRevSTAB.16.101302.

24. Cayzac, W., et al., A spectrometer on chemical vapour deposition-diamond basis for the measurement of the charge-state distribution of heavy ions in a laser-generated plasma. Review of scientific instruments, 2013. 84(4): p. 043301 DOI: 10.1063/1.4798539. http://repository.gsi.de/record/65422

http://dx.doi.org/10.1063/1.4798539.

25. Chen, W., et al., Charge transfer of slow highly charged xenon ions in collisions with magnesium atoms. Physical review / A, 2013. 88(5): p. 052703 DOI: 10.1103/PhysRevA.88.052703. http://repository.gsi.de/record/56271

http://dx.doi.org/10.1103/PhysRevA.88.052703.

26. Colgan, J., et al., Exotic Dense-Matter States Pumped by a Relativistic Laser Plasma in the Radiation-Dominated Regime. Physical review letters, 2013. 110(12): p. 125001 DOI: 10.1103/PhysRevLett.110.125001. http://repository.gsi.de/record/65836

http://dx.doi.org/10.1103/PhysRevLett.110.125001.

27. Dauletbekova, A., et al., LiF crystals irradiated with 150MeV Kr ions: Peculiarities of color center creation and thermal annealing. Nuclear instruments & methods in physics research / B, 2013. 295: p. 89 - 93 DOI: 10.1016/j.nimb.2012.11.004. http://repository.gsi.de/record/49544

http://dx.doi.org/10.1016/j.nimb.2012.11.004.

28. Demmler, S., et al., Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses. Optics letters, 2013. 38(23): p. 5051 - DOI: 10.1364/OL.38.005051. http://repository.gsi.de/record/65837

http://dx.doi.org/10.1364/OL.38.005051.

29. Döbrich, B., et al., Magnetically amplified light-shining-through-walls via virtual minicharged particles. Physical review / D, 2013. 87(2): p. 025022 DOI: 10.1103/PhysRevD.87.025022. http://repository.gsi.de/record/65821

http://dx.doi.org/10.1103/PhysRevD.87.025022.

30. Dolde, F., et al., Room-temperature entanglement between single defect spins in diamond. Nature physics, 2013. 9(3): p. 139 - 143 DOI: 10.1038/nphys2545. http://repository.gsi.de/record/65687

http://dx.doi.org/10.1038/nphys2545.

31. El-Said, A.S., et al., Surface nanostructuring of $LiNbO_3$ by high-density electronic excitations. Nuclear instruments & methods in physics research / B, 2013. 315: p. 265 - 268 DOI: 10.1016/j.nimb.2013.03.008. http://repository.gsi.de/record/65676

http://dx.doi.org/10.1016/j.nimb.2013.03.008.

32. Fedotova, S., et al., Cooling of highly charged ions — the HITRAP facility and Cooler trap. Physica scripta, 2013. T156: p. 014095 DOI: 10.1088/0031-8949/2013/T156/014095. http://repository.gsi.de/record/54904

http://dx.doi.org/10.1088/0031-8949/2013/T156/014095.

33. Fernandes, S., et al., In-situ electric resistance measurements and annealing effects of graphite exposed to swift heavy ions. Nuclear instruments & methods in physics research / B, 2013. 314: p. 125 - 129 DOI: 10.1016/j.nimb.2013.04.060. http://repository.gsi.de/record/65536

http://dx.doi.org/10.1016/j.nimb.2013.04.060.

34. Frank, A., et al., Energy Loss and Charge Transfer of Argon in a Laser-Generated Carbon Plasma. Physical review letters, 2013. 110(11): p. 115001 DOI: 10.1103/PhysRevLett.110.115001. http://repository.gsi.de/record/65428

http://dx.doi.org/10.1103/PhysRevLett.110.115001.

35. Fritzsche, S., T. Stöhlker, and A. Surzhykov, 16th international conference on the physics of highly charged ions. Physica scripta, 2013. T156: p. 010301 DOI: 10.1088/0031-8949/2013/T156/010301. http://repository.gsi.de/record/54900

http://dx.doi.org/10.1088/0031-8949/2013/T156/010301.

36. Fuchs, S., et al., Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources. Review of scientific instruments, 2013. 84(2): p. 023101 DOI: 10.1063/1.4788732. http://repository.gsi.de/record/65844

http://dx.doi.org/10.1063/1.4788732.

37. Gardiner, S.A., et al., Tunnelling of the 3rd kind: A test of the effective non-locality of quantum field theory. epl, 2013. 101(6): p. 61001 DOI: 10.1209/0295-5075/101/61001. http://repository.gsi.de/record/65820

http://dx.doi.org/10.1209/0295-5075/101/61001.

38. Geithner, R., et al., Low temperature permeability and current noise of ferromagnetic pickup coils. Cryogenics, 2013. 54: p. 16 - 19 DOI: 10.1016/j.cryogenics.2012.10.002. http://repository.gsi.de/record/54292

http://dx.doi.org/10.1016/j.cryogenics.2012.10.002.

39. Gies, H., F. Karbstein, and N. Seegert, Quantum reflection as a new signature of quantum vacuum nonlinearity. New journal of physics, 2013. 15(8): p. 083002 DOI: 10.1088/1367-2630/15/8/083002. http://repository.gsi.de/record/65818

http://dx.doi.org/10.1088/1367-2630/15/8/083002.

40. Gopal, A., et al., Observation of Gigawatt-Class THz Pulses from a Compact Laser-Driven Particle Accelerator. Physical review letters, 2013. 111(7): p. 074802 DOI: 10.1103/PhysRevLett.111.074802. http://repository.gsi.de/record/65854

http://dx.doi.org/10.1103/PhysRevLett.111.074802.

41. Gopal, A., et al., Characterization of 700  μJ T rays generated during high-power laser solid interaction. Optics letters, 2013. 38(22): p. 4705 - DOI: 10.1364/OL.38.004705. http://repository.gsi.de/record/65851

http://dx.doi.org/10.1364/OL.38.004705.

42. Goyon, C., et al., Experimental Approach to Interaction Physics Challenges of the Shock Ignition Scheme Using Short Pulse Lasers. Physical review letters, 2013. 111(23): p. 235006 DOI: 10.1103/PhysRevLett.111.235006. http://repository.gsi.de/record/65483

http://dx.doi.org/10.1103/PhysRevLett.111.235006.

43. Guerra, M., et al., Analysis of the charge state distribution in an ECRIS Ar plasma using high-resolution x-ray spectra. Journal of physics / B, 2013. 46(6): p. 065701 DOI: 10.1088/0953-4075/46/6/065701. http://repository.gsi.de/record/64805

http://dx.doi.org/10.1088/0953-4075/46/6/065701.

44. Gumberidze, A. and SPARC Collaboration, Atomic physics at the future facility for antiproton and ion research: a status report. Physica scripta, 2013. T156: p. 014084 DOI: 10.1088/0031-8949/2013/T156/014084. http://repository.gsi.de/record/54894

http://dx.doi.org/10.1088/0031-8949/2013/T156/014084.

45. Gumberidze, A., et al., Electron- and Proton-Impact Excitation of Hydrogenlike Uranium in Relativistic Collisions. Physical review letters, 2013. 110(21): p. 213201 DOI: 10.1103/PhysRevLett.110.213201. http://repository.gsi.de/record/53843

http://dx.doi.org/10.1103/PhysRevLett.110.213201.

46. Gunst, J., et al., Parity-nonconservation effects on the radiative recombination of heavy hydrogenlike ions. Physical review / A, 2013. 87(3): p. 032714 DOI: 10.1103/PhysRevA.87.032714. http://repository.gsi.de/record/51821

http://dx.doi.org/10.1103/PhysRevA.87.032714.

47. Günther, M.M., et al., NAIS: Nuclear activation-based imaging spectroscopy. Review of scientific instruments, 2013. 84(7): p. 073305 DOI: 10.1063/1.4815826. http://repository.gsi.de/record/65480

http://dx.doi.org/10.1063/1.4815826.

48. Hädrich, S., et al., Nonlinear compression to sub-30-fs, 05  mJ pulses at 135  W of average power. Optics letters, 2013. 38(19): p. 3866 - DOI: 10.1364/OL.38.003866. http://repository.gsi.de/record/65838

http://dx.doi.org/10.1364/OL.38.003866.

49. Hagmann, S., et al., Few-body quantum dynamics of high- Z ions studied at the future relativistic high-energy storage ring. Physica scripta, 2013. T156: p. 014086 - DOI: 10.1088/0031-8949/2013/T156/014086. http://repository.gsi.de/record/54884

http://dx.doi.org/10.1088/0031-8949/2013/T156/014086.

50. Hahn, M., et al., STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF $Fe^{13+}$ AND SINGLE IONIZATION OF $Fe^{16+}$ AND $Fe^{17+}$. The @astrophysical journal / 1, 2013. 767(1): p. 47 - DOI: 10.1088/0004-637X/767/1/47. http://repository.gsi.de/record/51825

http://dx.doi.org/10.1088/0004-637X/767/1/47.

51. Hammer, H.-W., A. Nogga, and A. Schwenk, Colloquium: Three-body forces: From cold atoms to nuclei. Reviews of modern physics, 2013. 85(1): p. 197 - 217 DOI: 10.1103/RevModPhys.85.197. http://repository.gsi.de/record/49585

http://dx.doi.org/10.1103/RevModPhys.85.197.

52. Hayrapetyan, A.G. and S. Fritzsche, Bessel beams of laser-driven two-level atoms. Physica scripta, 2013. T156: p. 014067 DOI: 10.1088/0031-8949/2013/T156/014067. http://repository.gsi.de/record/65862

http://dx.doi.org/10.1088/0031-8949/2013/T156/014067.

53. Hayrapetyan, A.G., et al., Bessel beams of two-level atoms driven by a linearly polarized laser field. The @European physical journal / D, 2013. 67(8): p. 167 DOI: 10.1140/epjd/e2013-30191-x. http://repository.gsi.de/record/65815

http://dx.doi.org/10.1140/epjd/e2013-30191-x.

54. Heeg, K.P., et al., Vacuum-Assisted Generation and Control of Atomic Coherences at X-Ray Energies. Physical review letters, 2013. 111(7): p. 073601 DOI: 10.1103/PhysRevLett.111.073601. http://repository.gsi.de/record/65834

http://dx.doi.org/10.1103/PhysRevLett.111.073601.

55. Hilbert, V., et al., An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers. Review of scientific instruments, 2013. 84(9): p. 095111 DOI: 10.1063/1.4821146. http://repository.gsi.de/record/65833

http://dx.doi.org/10.1063/1.4821146.

56. Hillenbrand, P.-M., et al., Future experiments using forward electron spectroscopy to study the quantum dynamics of high- Z ions at the ESR/CRYRING storage rings. Physica scripta, 2013. T156: p. 014087 DOI: 10.1088/0031-8949/2013/T156/014087. http://repository.gsi.de/record/54886

http://dx.doi.org/10.1088/0031-8949/2013/T156/014087.

57. Hofmann, I., Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons. Physical review / Special topics / Accelerators and beams, 2013. 16(4): p. 041302 DOI: 10.1103/PhysRevSTAB.16.041302. http://repository.gsi.de/record/54277

http://dx.doi.org/10.1103/PhysRevSTAB.16.041302.

58. Hornung, M., et al., High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS. Optics letters, 2013. 38(5): p. 718 - DOI: 10.1364/OL.38.000718. http://repository.gsi.de/record/65829

http://dx.doi.org/10.1364/OL.38.000718.

59. Jahrsetz, T. and A. Surzhykov, Two-photon transitions in few-electron ions in the presence of static electric fields. Physica scripta, 2013. T156: p. 014069 DOI: 10.1088/0031-8949/2013/T156/014069. http://repository.gsi.de/record/54892

http://dx.doi.org/10.1088/0031-8949/2013/T156/014069.

60. Jansen, F., et al., High-power thermally guiding index-antiguiding-core fibers. Optics letters, 2013. 38(4): p. 510 - 512 DOI: 10.1364/OL.38.000510. http://repository.gsi.de/record/65859

http://dx.doi.org/10.1364/OL.38.000510.

61. Jauregui, C., et al., Passive mitigation strategies for mode instabilities in high-power fiber laser systems. Optics express, 2013. 21(16): p. 19375 DOI: 10.1364/OE.21.019375. http://repository.gsi.de/record/65856

http://dx.doi.org/10.1364/OE.21.019375.

62. Jochmann, A., et al., High Resolution Energy-Angle Correlation Measurement of Hard X Rays from Laser-Thomson Backscattering. Physical review letters, 2013. 111(11): p. 114803 DOI: 10.1103/PhysRevLett.111.114803. http://repository.gsi.de/record/56274

http://dx.doi.org/10.1103/PhysRevLett.111.114803.

63. Kahaly, S., et al., Direct Observation of Density-Gradient Effects in Harmonic Generation from Plasma Mirrors. Physical review letters, 2013. 110(17): p. 175001 DOI: 10.1103/PhysRevLett.110.175001. http://repository.gsi.de/record/65865

http://dx.doi.org/10.1103/PhysRevLett.110.175001.

64. Karbstein, F., Photon polarization tensor in a homogeneous magnetic or electric field. Physical review / D, 2013. 88(8): p. 085033 DOI: 10.1103/PhysRevD.88.085033. http://repository.gsi.de/record/65831

http://dx.doi.org/10.1103/PhysRevD.88.085033.

65. Khan, S.A., et al., Sputtering yield of amorphous $^{13}C$ thin films under swift heavy-ion irradiation. Nuclear instruments & methods in physics research / B, 2013. 314: p. 34 - 38 DOI: 10.1016/j.nimb.2013.05.044. http://repository.gsi.de/record/65677

http://dx.doi.org/10.1016/j.nimb.2013.05.044.

66. Kiefer, D., et al., Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet. Nature Communications, 2013. 4: p. 1763 DOI: 10.1038/ncomms2775. http://repository.gsi.de/record/65866

http://dx.doi.org/10.1038/ncomms2775.

67. Kiefer, T., T. Schlegel, and M.C. Kaluza, Plasma expansion into vacuum assuming a steplike electron energy distribution. Physical review / E, 2013. 87(4): p. 043110 DOI: 10.1103/PhysRevE.87.043110. http://repository.gsi.de/record/65828

http://dx.doi.org/10.1103/PhysRevE.87.043110.

68. Kienel, M., et al., Analysis of passively combined divided-pulse amplification as an energy-scaling concept. Optics express, 2013. 21(23): p. 29031 DOI: 10.1364/OE.21.029031. http://repository.gsi.de/record/65845

http://dx.doi.org/10.1364/OE.21.029031.

69. Kienle, P., et al., High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like $^{142}Pm^{60+}$ ions. Physics letters / B, 2013. 726(4-5): p. 638 - 645 DOI: 10.1016/j.physletb.2013.09.033. http://repository.gsi.de/record/64731

http://dx.doi.org/10.1016/j.physletb.2013.09.033.

70. Klenke, A., et al., 530 W, 13 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Optics letters, 2013. 38(13): p. 2283 DOI: 10.1364/OL.38.002283. http://repository.gsi.de/record/65840

http://dx.doi.org/10.1364/OL.38.002283.

71. Klenke, A., et al., Divided-pulse nonlinear compression. Optics letters, 2013. 38(22): p. 4593-4596 DOI: 10.1364/OL.38.004593. http://repository.gsi.de/record/65846

http://dx.doi.org/10.1364/OL.38.004593.

72. Körner, J., et al., Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled $Yb^3+:CaF_2$. Optics express, 2013. 21(23): p. 29006 DOI: 10.1364/OE.21.029006. http://repository.gsi.de/record/65822

http://dx.doi.org/10.1364/OE.21.029006.

73. Kozhedub, Y.S., et al., Relativistic calculations of inner-shell atomic processes in low-energy ion–atom collisions. Physica scripta, 2013. T156: p. 014053 DOI: 10.1088/0031-8949/2013/T156/014053. http://repository.gsi.de/record/54889

http://dx.doi.org/10.1088/0031-8949/2013/T156/014053.

74. Kraus, D., et al., Probing the Complex Ion Structure in Liquid Carbon at 100 GPa. Physical review letters, 2013. 111(25): p. 255501 DOI: 10.1103/PhysRevLett.111.255501. http://repository.gsi.de/record/65423

http://dx.doi.org/10.1103/PhysRevLett.111.255501.

75. Krauser, J., et al., Conductive tracks of 30-MeV C60 clusters in doped and undoped tetrahedral amorphous carbon. Nuclear instruments & methods in physics research / B, 2013. 307: p. 265 - 268 DOI: 10.1016/j.nimb.2012.12.081. http://repository.gsi.de/record/65680

http://dx.doi.org/10.1016/j.nimb.2012.12.081.

76. Krebs, M., et al., Towards isolated attosecond pulses at megahertz repetition rates. Nature photonics, 2013. 7(7): p. 555 - 559 DOI: 10.1038/nphoton.2013.131. http://repository.gsi.de/record/65839

http://dx.doi.org/10.1038/nphoton.2013.131.

77. Kreim, S., et al., Recent exploits of the ISOLTRAP mass spectrometer. Nuclear instruments & methods in physics research / B, 2013. 317: p. 492 - 500 DOI: 10.1016/j.nimb.2013.07.072. http://repository.gsi.de/record/64808

http://dx.doi.org/10.1016/j.nimb.2013.07.072.

78. Kübel, M., et al., Nonsequential double ionization of $N_{2}$ in a near-single-cycle laser pulse. Physical review / A, 2013. 88(2): p. 023418 DOI: 10.1103/PhysRevA.88.023418. http://repository.gsi.de/record/65853

http://dx.doi.org/10.1103/PhysRevA.88.023418.

79. Kuhn, S., et al., $Sm^{3+}$-doped $La_2O_3–Al_2O_3–SiO_2$-glasses: structure, fluorescence and thermal expansion. Journal of materials science, 2013. 48(22): p. 8014 - 8022 DOI: 10.1007/s10853-013-7613-1. http://repository.gsi.de/record/65824

http://dx.doi.org/10.1007/s10853-013-7613-1.

80. LaForge, A.C., et al., Initial-state selective study of ionization dynamics in ion-Li collisions. Journal of physics / B, 2013. 46(3): p. 031001 - DOI: 10.1088/0953-4075/46/3/031001. http://repository.gsi.de/record/49562

http://dx.doi.org/10.1088/0953-4075/46/3/031001.

81. Li, W., et al., Effect of doping on the radiation response of conductive $Nb–SrTiO_3$. Nuclear instruments & methods in physics research / B, 2013. 302: p. 40 - 47 DOI: 10.1016/j.nimb.2013.03.010. http://repository.gsi.de/record/65682

http://dx.doi.org/10.1016/j.nimb.2013.03.010.

82. Lindenfels, D., et al., Half-open Penning trap with efficient light collection for precision laser spectroscopy of highly charged ions. Hyperfine interactions, 2013. xx: p. 1 DOI: 10.1007/s10751-013-0961-z. http://repository.gsi.de/record/64859

http://dx.doi.org/10.1007/s10751-013-0961-z.

83. Linusson, P., et al., Single-photon multiple ionization forming double vacancies in the $2p$ subshell of argon. Physical review / A, 2013. 87(4): p. 043409 DOI: 10.1103/PhysRevA.87.043409. http://repository.gsi.de/record/65864

http://dx.doi.org/10.1103/PhysRevA.87.043409.

84. Litvinov, Y.A., et al., Nuclear physics experiments with ion storage rings. Nuclear instruments & methods in physics research / B, 2013. 317: p. 603 - 616 DOI: 10.1016/j.nimb.2013.07.025. http://repository.gsi.de/record/64723

http://dx.doi.org/10.1016/j.nimb.2013.07.025.

85. Lushchik, A., et al., On the mechanisms of radiation damage and prospects of their suppression in complex metal oxides. Physica status solidi / B, 2013. 250(2): p. 261 - 270 DOI: 10.1002/pssb.201200488. http://repository.gsi.de/record/49547

http://dx.doi.org/10.1002/pssb.201200488.

86. Maiorova, A.V., et al., Production and diagnostics of spin-polarized heavy ions in the sequential two-electron radiative recombination. Physica scripta, 2013. T156: p. 014046 DOI: 10.1088/0031-8949/2013/T156/014046. http://repository.gsi.de/record/54907

http://dx.doi.org/10.1088/0031-8949/2013/T156/014046.

87. Maltsev, I.A., et al., Relativistic calculations of charge transfer probabilities in $U^{92+} – U^{91+} (1s)$ collisions using the basis set of cubic Hermite splines. Physica scripta, 2013. T156: p. 014056 DOI: 10.1088/0031-8949/2013/T156/014056. http://repository.gsi.de/record/54908

http://dx.doi.org/10.1088/0031-8949/2013/T156/014056.

88. Manea, V., et al., Collective degrees of freedom of neutron-rich A≈100 nuclei and the first mass measurement of the short-lived nuclide $^{100}Rb$. Physical review / C, 2013. 88(5): p. 054322 DOI: 10.1103/PhysRevC.88.054322. http://repository.gsi.de/record/64555

http://dx.doi.org/10.1103/PhysRevC.88.054322.

89. Märtin, R., et al., Target-thickness effects in electron–atom bremsstrahlung. Physica scripta, 2013. T156: p. 014070 DOI: 10.1088/0031-8949/2013/T156/014070. http://repository.gsi.de/record/54887

http://dx.doi.org/10.1088/0031-8949/2013/T156/014070.

90. Marx, B., et al., High-Precision X-Ray Polarimetry. Physical review letters, 2013. 110(25): p. 254801 DOI: 10.1103/PhysRevLett.110.254801. http://repository.gsi.de/record/56273

http://dx.doi.org/10.1103/PhysRevLett.110.254801.

91. Matei, E., et al., Magnetic configurations of Ni–Cu alloy nanowires obtained by the template method. Journal of nanoparticle research, 2013. 15(8): p. 1863 DOI: 10.1007/s11051-013-1863-3. http://repository.gsi.de/record/65690

http://dx.doi.org/10.1007/s11051-013-1863-3.

92. Matula, O., S. Fritzsche, and A. Surzhykov, Polarization correlations between photons emitted in dielectronic recombination of high-Z ions. Physica scripta, 2013. T156: p. 014051 - DOI: 10.1088/0031-8949/2013/T156/014051. http://repository.gsi.de/record/54926

http://dx.doi.org/10.1088/0031-8949/2013/T156/014051.

93. Matula, O., et al., Atomic ionization of hydrogen-like ions by twisted photons: angular distribution of emitted electrons. Journal of physics / B, 2013. 46(20): p. 205002 DOI: 10.1088/0953-4075/46/20/205002. http://repository.gsi.de/record/54927

http://dx.doi.org/10.1088/0953-4075/46/20/205002.

94. McConnell, S., A. Artemyev, and A. Surzhykov, Treatment of $U^{92+}–U^{91+}$ collisions in spherical co-ordinates: going beyond the monopole approximation. Physica scripta, 2013. T156: p. 014055 DOI: 10.1088/0031-8949/2013/T156/014055. http://repository.gsi.de/record/54893

http://dx.doi.org/10.1088/0031-8949/2013/T156/014055.

95. Medvedev, N.A., et al., Formation of the defect halo of swift heavy ion tracks in LiF due to spatial redistribution of valence holes. Physica status solidi / B, 2013. 250(4): p. 850 - 857 DOI: 10.1002/pssb.201200720. http://repository.gsi.de/record/65683

http://dx.doi.org/10.1002/pssb.201200720.

96. Medvedev, N.A., et al., Effect of spatial redistribution of valence holes on the formation of a defect halo of swift heavy-ion tracks in LiF. Physical review / B, 2013. 87(10): p. 104103 DOI: 10.1103/PhysRevB.87.104103. http://repository.gsi.de/record/49541

http://dx.doi.org/10.1103/PhysRevB.87.104103.

97. Mooser, A., et al., Resolution of Single Spin Flips of a Single Proton. Physical review letters, 2013. 110(14): p. 140405 DOI: 10.1103/PhysRevLett.110.140405. http://repository.gsi.de/record/56268

http://dx.doi.org/10.1103/PhysRevLett.110.140405.

98. Murböck, T., et al., SpecTrap: precision spectroscopy of highly charged ions—status and prospects. Physica scripta, 2013. T156: p. 014096 DOI: 10.1088/0031-8949/2013/T156/014096. http://repository.gsi.de/record/54896

http://dx.doi.org/10.1088/0031-8949/2013/T156/014096.

99. Nakano, Y., et al., Resonant coherent excitation of the lithiumlike uranium ion: A scheme for heavy-ion spectroscopy. Physical review / A, 2013. 87(6): p. 060501 DOI: 10.1103/PhysRevA.87.060501. http://repository.gsi.de/record/64847

http://dx.doi.org/10.1103/PhysRevA.87.060501.

100. Nasir, S., et al., Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with “caged” lysine chains. The @journal of chemical physics, 2013. 138(3): p. 034709 - DOI: 10.1063/1.4775811. http://repository.gsi.de/record/49577

http://dx.doi.org/10.1063/1.4775811.

101. Neumann, R., Science and technology on the nanoscale with swift heavy ions in matter. Nuclear instruments & methods in physics research / B, 2013. 314: p. 4 - 10 DOI: 10.1016/j.nimb.2013.04.035. http://repository.gsi.de/record/65695

http://dx.doi.org/10.1016/j.nimb.2013.04.035.

102. Ni, P.A., et al., Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils. Physics of plasmas, 2013. 20(8): p. 083111 DOI: 10.1063/1.4818147. http://repository.gsi.de/record/65481

http://dx.doi.org/10.1063/1.4818147.

103. Nörtershäuser, W., et al., First observation of the ground-state hyperfine transition in $^{209}Bi^{80+}$. Physica scripta, 2013. T156: p. 014016 DOI: 10.1088/0031-8949/2013/T156/014016. http://repository.gsi.de/record/54895

http://dx.doi.org/10.1088/0031-8949/2013/T156/014016.

104. Otto, H.-J., et al., Improved Modal Reconstruction for Spatially and Spectrally Resolved Imaging $S^2$. Journal of lightwave technology, 2013. 31(8): p. 1295 - 1299 DOI: 10.1109/JLT.2013.2242430. http://repository.gsi.de/record/65858

http://dx.doi.org/10.1109/JLT.2013.2242430.

105. Otto, H.-J., et al., Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Optics express, 2013. 21(14): p. 17285 - 17298 DOI: 10.1364/OE.21.017285. http://repository.gsi.de/record/65857

http://dx.doi.org/10.1364/OE.21.017285.

106. Papuga, J., et al., Spins and Magnetic Moments of $^{49}K$ and $^{51}K$: Establishing the $1/2^{+}$ and $3/2^{+}$ Level Ordering Beyond N=28. Physical review letters, 2013. 110(17): p. 172503 DOI: 10.1103/PhysRevLett.110.172503. http://repository.gsi.de/record/51836

http://dx.doi.org/10.1103/PhysRevLett.110.172503.

107. Pietschmann, J.-F., et al., Rectification properties of conically shaped nanopores: consequences of miniaturization. Physical chemistry, chemical physics, 2013. 15(39): p. 16917 DOI: 10.1039/c3cp53105h. http://repository.gsi.de/record/65686

http://dx.doi.org/10.1039/c3cp53105h.

108. Pikuz, S.A., et al., Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses. High energy density physics, 2013. 9(3): p. 560 - 567 DOI: 10.1016/j.hedp.2013.05.008. http://repository.gsi.de/record/65835

http://dx.doi.org/10.1016/j.hedp.2013.05.008.

109. Piriz, A.R., S.A. Piriz, and N.A. Tahir, High pressure generation by hot electrons driven ablation. Physics of plasmas: devoted to original contributions to and reviews of the physics of plasmas, including magnetofluid mechanics, kinetic theory and statistical mechanics of fully and partially ionized gases, 2013. 20: p. 112704 DOI: 10.1063/1.4833680. http://repository.gsi.de/record/65420

http://dx.doi.org/10.1063/1.4833680.

110. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Rayleigh-Taylor stability boundary at solid-liquid interfaces. Physical review / E, 2013. 88: p. 023026 DOI: 10.1103/PhysRevE.88.023026. http://repository.gsi.de/record/65421

http://dx.doi.org/10.1103/PhysRevE.88.023026.

111. Piriz, A.R. and N.A. Tahir, Physics of ablative Rayleigh–Taylor and Landau–Darrieus instabilities. New journal of physics, 2013. 15(1): p. 015013 DOI: 10.1088/1367-2630/15/1/015013. http://repository.gsi.de/record/49576

http://dx.doi.org/10.1088/1367-2630/15/1/015013.

112. Povarnitsyn, M.E., et al., Laser irradiation of thin films: Effect of energy transformation. Laser and particle beams, 2013. 31(04): p. 663 - 671 DOI: 10.1017/S0263034613000700. http://repository.gsi.de/record/65484

http://dx.doi.org/10.1017/S0263034613000700.

113. Ramirez, P., et al., Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry communications, 2013. 31: p. 137 - 140 DOI: 10.1016/j.elecom.2013.03.026. http://repository.gsi.de/record/65692

http://dx.doi.org/10.1016/j.elecom.2013.03.026.

114. Rathje, T., et al., Coherent Control at Its Most Fundamental: Carrier-Envelope-Phase-Dependent Electron Localization in Photodissociation of a $H_{2}^{+}$ Molecular Ion Beam Target. Physical review letters, 2013. 111(9): p. 093002 DOI: 10.1103/PhysRevLett.111.093002. http://repository.gsi.de/record/65852

http://dx.doi.org/10.1103/PhysRevLett.111.093002.

115. Reuschl, R., et al., Lifetime measurement of the $2 ^3P_0$ state in He-like uranium. Physica scripta, 2013. T156: p. 014024 - DOI: 10.1088/0031-8949/2013/T156/014024. http://repository.gsi.de/record/54903

http://dx.doi.org/10.1088/0031-8949/2013/T156/014024.

116. Riedel, R., et al., Single-shot pulse duration monitor for extreme ultraviolet and X-ray free-electron lasers. Nature Communications, 2013. 4: p. 1731 DOI: 10.1038/ncomms2754. http://repository.gsi.de/record/65869

http://dx.doi.org/10.1038/ncomms2754.

117. Riedel, R., et al., Long-term stabilization of high power optical parametric chirped-pulse amplifiers. Optics express, 2013. 21(23): p. 28987 - 28999 DOI: 10.1364/OE.21.028987. http://repository.gsi.de/record/65868

http://dx.doi.org/10.1364/OE.21.028987.

118. Rodriguez, M.D., et al., The influence of swift heavy ion irradiation on the recrystallization of amorphous $Fe_{80}B_{20}$. Microelectronic engineering, 2013. 102: p. 64 - 66 DOI: 10.1016/j.mee.2012.05.030. http://repository.gsi.de/record/49598

http://dx.doi.org/10.1016/j.mee.2012.05.030.

119. Rodriguez Prieto, G., et al., Dynamic stabilization of Rayleigh-Taylor instability: Experiments with Newtonian fluids as surrogates for ablation fronts. Physics of plasmas, 2013. 20(1): p. 012706 DOI: 10.1063/1.4789552. http://repository.gsi.de/record/65424

http://dx.doi.org/10.1063/1.4789552.

120. Rodriguez, V.A., et al., Development of a Superconducting Transverse-Gradient Undulator for Laser-Wakefield Accelerators. IEEE transactions on applied superconductivity, 2013. 23(3): p. 4101505 - 4101505 DOI: 10.1109/TASC.2013.2240151. http://repository.gsi.de/record/65827

http://dx.doi.org/10.1109/TASC.2013.2240151.

121. Rothhardt, J., et al., Thermal effects in high average power optical parametric amplifiers. Optics letters, 2013. 38(5): p. 763 - DOI: 10.1364/OL.38.000763. http://repository.gsi.de/record/65841

http://dx.doi.org/10.1364/OL.38.000763.

122. Russakova, A., et al., Color center accumulation in LiF crystals under irradiation with MeV ions: Optical spectroscopy and modeling. Nuclear instruments & methods in physics research / B, 2013. 313: p. 21 - 25 DOI: 10.1016/j.nimb.2013.08.007. http://repository.gsi.de/record/65691

http://dx.doi.org/10.1016/j.nimb.2013.08.007.

123. Salem, S., et al., Angular distribution of photons for the simultaneous excitation and ionization of He-like uranium ions in relativistic ion-atom collisions. Physical review / A, 2013. 88(1): p. 012701 DOI: 10.1103/PhysRevA.88.012701. http://repository.gsi.de/record/56272

http://dx.doi.org/10.1103/PhysRevA.88.012701.

124. Schauries, D., et al., Temperature dependence of ion track formation in quartz and apatite. Journal of applied crystallography, 2013. 46(6): p. 1558 - 1563 DOI: 10.1107/S0021889813022802. http://repository.gsi.de/record/65675

http://dx.doi.org/10.1107/S0021889813022802.

125. Schnell, M., et al., Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator. Nature Communications, 2013. 4: p. 2421 DOI: 10.1038/ncomms3421. http://repository.gsi.de/record/65825

http://dx.doi.org/10.1038/ncomms3421.

126. Schwab, M.B., et al., Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions. Applied physics letters, 2013. 103(19): p. 191118 DOI: 10.1063/1.4829489. http://repository.gsi.de/record/65823

http://dx.doi.org/10.1063/1.4829489.

127. Shi, Y.-L., et al., Polarization of M2 Line Emitted Following Electron-Impact Excitation of Beryllium-Like Ions. Chinese physics letters, 2013. 30(6): p. 063401 DOI: 10.1088/0256-307X/30/6/063401. http://repository.gsi.de/record/65863

http://dx.doi.org/10.1088/0256-307X/30/6/063401.

128. Shi, Y.-L., et al., Theory of X-Ray Anisotropy and Polarization Following the Dielectronic Recombination of Initially Hydrogen-Like Ions. Chinese physics letters, 2013. 30(2): p. 023402 - DOI: 10.1088/0256-307X/30/2/023402. http://repository.gsi.de/record/51849

http://dx.doi.org/10.1088/0256-307X/30/2/023402.

129. Sirse, N., et al., Chlorine atom densities in the $(3{\rm p}^{5})^{2} {\rm P}_{1/2}^{\rm o}$ excited spin–orbit state measured by two-photon absorption laser-induced fluorescence in a chlorine inductively coupled plasma. Journal of physics / D, 2013. 46(29): p. 295203 DOI: 10.1088/0022-3727/46/29/295203. http://repository.gsi.de/record/65816

http://dx.doi.org/10.1088/0022-3727/46/29/295203.

130. Sobiczewski, A. and Y.A. Litvinov, Quality of theoretical masses in various regions of the nuclear chart. Physica scripta, 2013. T154: p. 014001 - DOI: 10.1088/0031-8949/2013/T154/014001. http://repository.gsi.de/record/51853

http://dx.doi.org/10.1088/0031-8949/2013/T154/014001.

131. Spillmann, U., et al., Employing digital pulse processing electronics for the readout of a Si(Li)—Compton—polarimeter for the SPARC collaboration. Physica scripta, 2013. T156: p. 014103 DOI: 10.1088/0031-8949/2013/T156/014103. http://repository.gsi.de/record/54888

http://dx.doi.org/10.1088/0031-8949/2013/T156/014103.

132. Stanja, J., et al., Mass spectrometry and decay spectroscopy of isomers across the Z=82 shell closure. Physical review / C, 2013. 88(5): p. 054304 DOI: 10.1103/PhysRevC.88.054304. http://repository.gsi.de/record/64558

http://dx.doi.org/10.1103/PhysRevC.88.054304.

133. Stöhlker, T., et al., SPARC experiments at the high-energy storage ring. Physica scripta, 2013. T156: p. 014085 DOI: 10.1088/0031-8949/2013/T156/014085. http://repository.gsi.de/record/54885

http://dx.doi.org/10.1088/0031-8949/2013/T156/014085.

134. Stolterfoht, N., et al., Areal density effects on the blocking of 3-keV $Ne^{7+}$ ions guided through nanocapillaries in polymers. Physical review / A, 2013. 88(3): p. 032902 DOI: 10.1103/PhysRevA.88.032902. http://repository.gsi.de/record/65679

http://dx.doi.org/10.1103/PhysRevA.88.032902.

135. Sturm, S., et al., g-factor measurement of hydrogenlike $^{28}Si^{13+}$ as a challenge to QED calculations. Physical review / A, 2013. 87(3): p. 030501 DOI: 10.1103/PhysRevA.87.030501. http://repository.gsi.de/record/51854

http://dx.doi.org/10.1103/PhysRevA.87.030501.

136. Stutzki, F., et al., 24 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality. Optics letters, 2013. 38(2): p. 97 - 99 DOI: 10.1364/OL.38.000097. http://repository.gsi.de/record/65860

http://dx.doi.org/10.1364/OL.38.000097.

137. Surzhykov, A., et al., Hyperfine-induced effects on the linear polarization of $Kα_{1}$ emission from heliumlike ions. Physical review / A, 2013. 87(5): p. 052507 DOI: 10.1103/PhysRevA.87.052507. http://repository.gsi.de/record/53447

http://dx.doi.org/10.1103/PhysRevA.87.052507.

138. Surzhykov, A., et al., Parity violation in beryllium-like heavy ions. Physica scripta, 2013. T156: p. 014027 DOI: 10.1088/0031-8949/2013/T156/014027. http://repository.gsi.de/record/65813

http://dx.doi.org/10.1088/0031-8949/2013/T156/014027.

139. Surzhykov, A., R.H. Pratt, and S. Fritzsche, Two-photon decay of inner-shell vacancies in heavy atoms. Physical review / A, 2013. 88(4): p. 042512 DOI: 10.1103/PhysRevA.88.042512. http://repository.gsi.de/record/55508

http://dx.doi.org/10.1103/PhysRevA.88.042512.

140. Surzhykov, A., et al., Polarization correlations in the elastic Rayleigh scattering of photons by hydrogenlike ions. Physical review / A, 2013. 88(6): p. 062515 DOI: 10.1103/PhysRevA.88.062515. http://repository.gsi.de/record/65812

http://dx.doi.org/10.1103/PhysRevA.88.062515.

141. Szabo, C.I., et al., Ion temperature and x-ray line width measurements of highly charged argon ions in an ECR ion source. Physica scripta, 2013. T156: p. 014077 DOI: 10.1088/0031-8949/2013/T156/014077. http://repository.gsi.de/record/64841

http://dx.doi.org/10.1088/0031-8949/2013/T156/014077.

142. Tahir, M.N., et al., Silicatein conjugation inside nanoconfined geometries through immobilized $NTA–Ni_{(ii)}$ chelates. Chemical communications, 2013. 49(22): p. 2210 DOI: 10.1039/c3cc38605h. http://repository.gsi.de/record/65694

http://dx.doi.org/10.1039/c3cc38605h.

143. Tahir, N.A., et al., Prospects of warm dense matter research at HiRadMat facility at CERN using 440 MeV SPS proton beam. High energy density physics, 2013. 9(2): p. 269 - 276 DOI: 10.1016/j.hedp.2012.12.010. http://repository.gsi.de/record/65427

http://dx.doi.org/10.1016/j.hedp.2012.12.010.

144. Tahir, N.A., et al., Ion Beam Driven High Energy Density Physics Studies at FAIR at Darmstadt: The HEDgeHOB Collaboration. Contributions to plasma physics, 2013. 53(4-5): p. 292 - 299 DOI: 10.1002/ctpp.201200112. http://repository.gsi.de/record/65425

http://dx.doi.org/10.1002/ctpp.201200112.

145. Tashenov, S., et al., Observation of the spin–orbit interaction in bremsstrahlung. Physica scripta, 2013. T156: p. 014071 DOI: 10.1088/0031-8949/2013/T156/014071. http://repository.gsi.de/record/54891

http://dx.doi.org/10.1088/0031-8949/2013/T156/014071.

146. Tashenov, S., et al., Bremsstrahlung polarization correlations and their application for polarimetry of electron beams. Physical review / A, 2013. 87(2): p. 022707 DOI: 10.1103/PhysRevA.87.022707. http://repository.gsi.de/record/51857

http://dx.doi.org/10.1103/PhysRevA.87.022707.

147. Tauschwitz, A., et al., 2D radiation-hydrodynamics modeling of laser-plasma targets for ion stopping measurements. High energy density physics, 2013. 9: p. 158–166 DOI: 10.1016/j.hedp.2012.12.004. http://repository.gsi.de/record/65418

http://dx.doi.org/10.1016/j.hedp.2012.12.004.

148. Tkachenko, L., et al., Development of Wide-Aperture Quadrupole Magnets for Plasma Experiments in the FAIR Project. IEEE transactions on applied superconductivity, 2013. 23(3): p. 4000204 - 4000204 DOI: 10.1109/TASC.2012.2229333. http://repository.gsi.de/record/48357

http://dx.doi.org/10.1109/TASC.2012.2229333.

149. Tol, J., et al., Anomalous Phases in Cavity-Free 240 GHz Pulsed ENDOR Spectra of 1.44 GeV Xe-Irradiated LiF. Applied magnetic resonance, 2013. 44(1-2): p. 117 - 132 DOI: 10.1007/s00723-012-0407-9. http://repository.gsi.de/record/49573

http://dx.doi.org/10.1007/s00723-012-0407-9.

150. Toulemonde, M., et al., Reply to “Comment on ‘Dense and nanometric electronic excitations induced by swift heavy ions in an ionic $CaF_2$ crystal: Evidence for two thresholds of damage creation’ ”. Physical review / B, 2013. 87(5): p. 056102 DOI: 10.1103/PhysRevB.87.056102. http://repository.gsi.de/record/65684

http://dx.doi.org/10.1103/PhysRevB.87.056102.

151. Ulmer, S., et al., A cryogenic detection system at 28.9MHZ for the non-destructive observation of a single proton at low particle energy. Nuclear instruments & methods in physics research / A, 2013. 705: p. 55 - 60 DOI: 10.1016/j.nima.2012.12.071. http://repository.gsi.de/record/51877

http://dx.doi.org/10.1016/j.nima.2012.12.071.

152. Vergunova, G.A., et al., Mathematical modeling of gas-dynamic and radiative processes in experiments with the use of laser and heavy-ion beams. Plasma physics reports, 2013. 39(9): p. 755 - 762 DOI: 10.1134/S1063780X13090080. http://repository.gsi.de/record/65493

http://dx.doi.org/10.1134/S1063780X13090080.

153. Vogel, M., et al., Switchable magnetic bottles and field gradients for particle traps. Applied physics / B, 2013. B(1-2): p. 1 DOI: 10.1007/s00340-013-5707-8. http://repository.gsi.de/record/64860

http://dx.doi.org/10.1007/s00340-013-5707-8.

154. Vogel, M. and W. Quint, Aspects of fundamental physics in precision spectroscopy of highly charged ions in Penning traps. Annalen der Physik, 2013. 525(7): p. 505 - 513 DOI: 10.1002/andp.201300032. http://repository.gsi.de/record/64843

http://dx.doi.org/10.1002/andp.201300032.

155. von Lindenfels, D., et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Physical review / A, 2013. 87(2): p. 023412 DOI: 10.1103/PhysRevA.87.023412. http://repository.gsi.de/record/51878

http://dx.doi.org/10.1103/PhysRevA.87.023412.

156. Wagner, A., et al., g Factor of Lithiumlike Silicon $^{28}Si^{11+}$. Physical review letters, 2013. 110(3): p. 033003 DOI: 10.1103/PhysRevLett.110.033003. http://repository.gsi.de/record/51885

http://dx.doi.org/10.1103/PhysRevLett.110.033003.

157. Wen, W., et al., Preparations for laser cooling of relativistic heavy-ion beams at the CSRe. Physica scripta, 2013. T156: p. 014090 DOI: 10.1088/0031-8949/2013/T156/014090. http://repository.gsi.de/record/54922

http://dx.doi.org/10.1088/0031-8949/2013/T156/014090.

158. Wen, W.Q., et al., Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR. Nuclear instruments & methods in physics research / A, 2013. 711: p. 90 - 95 DOI: 10.1016/j.nima.2013.01.058. http://repository.gsi.de/record/51886

http://dx.doi.org/10.1016/j.nima.2013.01.058.

159. Wenz, A.N., et al., From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, 2013. 342(6157): p. 457 - 460 DOI: 10.1126/science.1240516. http://repository.gsi.de/record/64643

http://dx.doi.org/10.1126/science.1240516.

160. Wienholtz, F., et al., Masses of exotic calcium isotopes pin down nuclear forces. Nature <London>, 2013. 498(7454): p. 346 - 349 DOI: 10.1038/nature12226. http://repository.gsi.de/record/64580

http://dx.doi.org/10.1038/nature12226.

161. Winters, D.F.A., et al., A beamline for x-ray laser spectroscopy at the experimental storage ring at GSI. Physica scripta, 2013. T156: p. 014089 DOI: 10.1088/0031-8949/2013/T156/014089. http://repository.gsi.de/record/54905

http://dx.doi.org/10.1088/0031-8949/2013/T156/014089.

162. Wolf, R.N., et al., ISOLTRAP's multi-reflection time-of-flight mass separator/spectrometer. International journal of mass spectrometry, 2013. 349-350: p. 123 - 133 DOI: 10.1016/j.ijms.2013.03.020. http://repository.gsi.de/record/64575

http://dx.doi.org/10.1016/j.ijms.2013.03.020.

163. Yamaki, T., et al., Ion-track membranes of fluoropolymers: Toward controlling the pore size and shape. Nuclear instruments & methods in physics research / B, 2013. 314: p. 77 - 81 DOI: 10.1016/j.nimb.2013.05.028. http://repository.gsi.de/record/65678

http://dx.doi.org/10.1016/j.nimb.2013.05.028.

164. Yan, X.L., et al., Mass measurement of $^{45}Cr$ and its impact on the Ca-Sc cycle in y-ray bursts. The @astrophysical journal / 2, 2013. 766(1): p. L8 - DOI: 10.1088/2041-8205/766/1/L8. http://repository.gsi.de/record/51887

http://dx.doi.org/10.1088/2041-8205/766/1/L8.

165. Yerokhin, V.A., et al., Bremsstrahlung of polarized positrons scattered off atoms. Physica scripta, 2013. T156: p. 014072 DOI: 10.1088/0031-8949/2013/T156/014072. http://repository.gsi.de/record/65811

http://dx.doi.org/10.1088/0031-8949/2013/T156/014072.

166. Yeung, M., et al., Beaming of High-Order Harmonics Generated from Laser-Plasma Interactions. Physical review letters, 2013. 110(16): p. 165002 DOI: 10.1103/PhysRevLett.110.165002. http://repository.gsi.de/record/65861

http://dx.doi.org/10.1103/PhysRevLett.110.165002.

167. Yeung, M., et al., Near-monochromatic high-harmonic radiation from relativistic laser–plasma interactions with blazed grating surfaces. New journal of physics, 2013. 15(2): p. 025042 DOI: 10.1088/1367-2630/15/2/025042. http://repository.gsi.de/record/65855

http://dx.doi.org/10.1088/1367-2630/15/2/025042.

168. Yordanov, D.T., et al., Spins, Electromagnetic Moments, and Isomers of $^{107-129}Cd$. Physical review letters, 2013. 110(19): p. 192501 DOI: 10.1103/PhysRevLett.110.192501. http://repository.gsi.de/record/51888

http://dx.doi.org/10.1103/PhysRevLett.110.192501.

169. Zastrau, U., et al., Characterization of strongly-bent HAPG crystals for von-Hámos x-ray spectrographs. Journal of Instrumentation, 2013. 8(10): p. P10006 - P10006 DOI: 10.1088/1748-0221/8/10/P10006. http://repository.gsi.de/record/65867

http://dx.doi.org/10.1088/1748-0221/8/10/P10006.

170. Zhang, Y.H., et al., Test of IMME in fp shell via direct mass measurements of $T_z=- 3/2$ nuclides. Journal of physics / Conference Series, 2013. 420: p. 012054 - DOI: 10.1088/1742-6596/420/1/012054. http://repository.gsi.de/record/51889

http://dx.doi.org/10.1088/1742-6596/420/1/012054.

171. Zürch, M., C. Kern, and C. Spielmann, XUV coherent diffraction imaging in reflection geometry with low numerical aperture. Optics express, 2013. 21(18): p. 21131 DOI: 10.1364/OE.21.021131. http://repository.gsi.de/record/65870

http://dx.doi.org/10.1364/OE.21.021131.

 

2014

1. Afra, B., et al., Annealing behaviour of ion tracks in olivine, apatite and britholite. Nuclear instruments & methods in physics research / B, 2014. 326: p. 126 - 130 DOI: 10.1016/j.nimb.2013.10.072. http://repository.gsi.de/record/97568

http://dx.doi.org/10.1016/j.nimb.2013.10.072.

2. Afra, B., et al., Thermal response of nanoscale cylindrical inclusions of amorphous silica embedded in α-quartz. Physical review / B, 2014. 90(22): p. 224108 DOI: 10.1103/PhysRevB.90.224108. http://repository.gsi.de/record/97540

http://dx.doi.org/10.1103/PhysRevB.90.224108.

3. Akram, N., et al., Transmission of slow highly charged ions through rectangular nanocapillaries. Journal of physics / Conference Series, 2014. 488(13): p. 132043 DOI: 10.1088/1742-6596/488/13/132043. http://repository.gsi.de/record/97543

http://dx.doi.org/10.1088/1742-6596/488/13/132043.

4. Ali, M., et al., Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied physics letters, 2014. 104(4): p. 043703 - DOI: 10.1063/1.4863511. http://repository.gsi.de/record/97633

http://dx.doi.org/10.1063/1.4863511.

5. Ali, M., et al., Current rectification by nanoparticle blocking in single cylindrical nanopores. Nanoscale, 2014. 6(18): p. 10740 DOI: 10.1039/C4NR02968B. http://repository.gsi.de/record/97545

http://dx.doi.org/10.1039/C4NR02968B.

6. Amaro, P., et al., Measurement of the angular distribution of Dielectronic Recombination into highly charged Krypton ions. XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013), 2014. 488(6): p. 062030 DOI: 10.1088/1742-6596/488/6/062030. http://repository.gsi.de/record/65338

http://dx.doi.org/10.1088/1742-6596/488/6/062030.

7. Apel, P.Y., et al., Radiation effects of swift heavy ions in polymers: Determination of nanoshapes from electro-conductivity. Nuclear instruments & methods in physics research / B, 2014. 326: p. 158 - 162 DOI: 10.1016/j.nimb.2013.10.089. http://repository.gsi.de/record/97612

http://dx.doi.org/10.1016/j.nimb.2013.10.089.

8. Avnon, A., et al., Quasi one dimensional transport in individual electrospun composite nanofibers. AIP Advances, 2014. 4(1): p. 017110 DOI: 10.1063/1.4862168. http://repository.gsi.de/record/64866

http://dx.doi.org/10.1063/1.4862168.

9. Banaś, D., et al., Monte-Carlo simulations of the radiative recombination of ions with electrons in cold magnetized plasma. Physica scripta, 2014. T161: p. 014001 DOI: 10.1088/0031-8949/2014/T161/014001. http://repository.gsi.de/record/65655

http://dx.doi.org/10.1088/0031-8949/2014/T161/014001.

10. Bernhardt, D., et al., Dielectronic recombination of berylliumlike $Si^{10+}$ ions at the heavy-ion storage ring TSR, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 062012 DOI: 10.1088/1742-6596/488/6/062012. http://repository.gsi.de/record/65346

http://dx.doi.org/10.1088/1742-6596/488/6/062012.

11. Bernhardt, D., et al., Dielectronic recombination of boronlike $Si^{9+}$ ions at the heavy-ion storage ring TSR, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 062011 DOI: 10.1088/1742-6596/488/6/062011. http://repository.gsi.de/record/65339

http://dx.doi.org/10.1088/1742-6596/488/6/062011.

12. Bernhardt, D., et al., Absolute rate coefficients for photorecombination and electron-impact ionization of magnesiumlike iron ions from measurements at a heavy-ion storage ring. Physical review / A, 2014. 90(1): p. 012702 DOI: 10.1103/PhysRevA.90.012702. http://repository.gsi.de/record/66750

http://dx.doi.org/10.1103/PhysRevA.90.012702.

13. Bernhardt, D., et al., Dielectronic recombination of lithiumlike $Xe^{51+}$ ions: Storage ring experiment and theoretical calculations, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, hina. p. 062014 DOI: 10.1088/1742-6596/488/6/062014. http://repository.gsi.de/record/65343

http://dx.doi.org/10.1088/1742-6596/488/6/062014.

14. Bernhardt, D., et al., Dielectronic recombination of berylliumlike $Xe^{50+}$ ions: Measurement and theoretical calculations, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 062013 DOI: 10.1088/1742-6596/488/6/062013. http://repository.gsi.de/record/65345

http://dx.doi.org/10.1088/1742-6596/488/6/062013.

15. Bierschenk, T., et al., Effect of electronic energy loss on ion track formation in amorphous Ge. Nuclear instruments & methods in physics research / B, 2014. 326: p. 113 - 116 DOI: 10.1016/j.nimb.2013.10.048. http://repository.gsi.de/record/97608

http://dx.doi.org/10.1016/j.nimb.2013.10.048.

16. Bissell, M.L., et al., Proton-Neutron Pairing Correlations in the Self-Conjugate Nucleus $^{38}$K Probed via a Direct Measurement of the Isomer Shift. Physical review letters, 2014. 113(5): p. 052502 DOI: 10.1103/PhysRevLett.113.052502. http://repository.gsi.de/record/201128

http://dx.doi.org/10.1103/PhysRevLett.113.052502.

17. Bondarevskaya, A., et al., Method for the production of highly charged ions with polarized nuclei and zero total electron angular momentum. Physical review / A, 2014. 90(6): p. 064701 DOI: 10.1103/PhysRevA.90.064701. http://repository.gsi.de/record/97475

http://dx.doi.org/10.1103/PhysRevA.90.064701.

18. Botermann, B., et al., Test of Time Dilation Using Stored $Li^+$ Ions as Clocks at Relativistic Speed. Physical review letters, 2014. 113(12): p. 120405 DOI: 10.1103/PhysRevLett.113.120405. http://repository.gsi.de/record/83434

http://dx.doi.org/10.1103/PhysRevLett.113.120405.

19. Bret, A., A.R. Piriz, and N.A. Tahir, Imprint reduction in rotating heavy ions beam energy deposition. Nuclear instruments & methods in physics research / A, 2014. 733: p. 200–202 DOI: 10.1016/j.nima.2013.05.069. http://repository.gsi.de/record/65414

http://dx.doi.org/10.1016/j.nima.2013.05.069.

20. Busold, S., et al., Shaping laser accelerated ions for future applications - The LIGHT collaboration. Nuclear instruments & methods in physics research / A, 2014. 740: p. 94–98 DOI: 10.1016/j.nima.2013.10.025. http://repository.gsi.de/record/65416

http://dx.doi.org/10.1016/j.nima.2013.10.025.

21. Busold, S., et al., Image plate characterization and absolute calibration to low kilo-electron-volt electrons. Review of scientific instruments, 2014. 85(11): p. 113306 - DOI: 10.1063/1.4902321. http://repository.gsi.de/record/96071

http://dx.doi.org/10.1063/1.4902321.

22. Busold, S., et al., Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV. Physical review / Special topics / Accelerators and beams, 2014. 17: p. 031302 DOI: 10.1103/PhysRevSTAB.17.031302. http://repository.gsi.de/record/65417

http://dx.doi.org/10.1103/PhysRevSTAB.17.031302.

23. Chen, W., et al., Metal vapor target for precise studies of ion-atom collisions. Review of scientific instruments, 2014. 85(5): p. 053513 DOI: 10.1063/1.4878626. http://repository.gsi.de/record/66547

http://dx.doi.org/10.1063/1.4878626.

24. Costantini, J.-M., et al., [Editorial] EMRS 2013 syposium M. Nuclear instruments & methods in physics research / B, 2014. 327: p. 1 DOI: 10.1016/j.nimb.2014.03.006. http://repository.gsi.de/record/97567

http://dx.doi.org/10.1016/j.nimb.2014.03.006.

25. Dauletbekova, A., et al., F center creation and aggregation in LiF crystals irradiated with $^{14}N, ^{40}Ar$, and $^{84}Kr$ ions. Nuclear instruments & methods in physics research / B, 2014. 326: p. 311 - 313 DOI: 10.1016/j.nimb.2013.09.026. http://repository.gsi.de/record/97615

http://dx.doi.org/10.1016/j.nimb.2013.09.026.

26. Denis-Petit, D., et al., Identification of X-ray spectra in the Na-like to O-like rubidium ions in the range of 3.8–7.3Å. Journal of quantitative spectroscopy & radiative transfer, 2014. 148: p. 70 - 89 DOI: 10.1016/j.jqsrt.2014.06.004. http://repository.gsi.de/record/96766

http://dx.doi.org/10.1016/j.jqsrt.2014.06.004.

27. Depierreux, S., et al., Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping. Nature Communications, 2014. 5: p. 4158 DOI: 10.1038/ncomms5158. http://repository.gsi.de/record/97352

http://dx.doi.org/10.1038/ncomms5158.

28. Deutsch, C., et al., Multiple scattering in electron fluid and energy lossin multi-ionic targets. Nuclear instruments & methods in physics research / A, 2014. 733: p. 39-44 DOI: 10.1016/j.nima.2013.05.097. http://repository.gsi.de/record/65415

http://dx.doi.org/10.1016/j.nima.2013.05.097.

29. Döppner, T., et al., Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility$^{a)}$. Review of scientific instruments, 2014. 85(11): p. 11D617 - DOI: 10.1063/1.4890253. http://repository.gsi.de/record/96588

http://dx.doi.org/10.1063/1.4890253.

30. Faik, S., et al., Creation of a homogeneous plasma column by means of hohlraum radiation for ion-stopping measurements. High energy density physics, 2014. 10: p. 47 - 55 DOI: 10.1016/j.hedp.2013.10.002. http://repository.gsi.de/record/65486

http://dx.doi.org/10.1016/j.hedp.2013.10.002.

31. Florica, C., et al., Field Effect Transistor with Electrodeposited ZnO Nanowire Channel. Electrochimica acta, 2014. 137: p. 290 - 297 DOI: 10.1016/j.electacta.2014.05.124. http://repository.gsi.de/record/97569

http://dx.doi.org/10.1016/j.electacta.2014.05.124.

32. Gao, X., et al., Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe. Nuclear instruments & methods in physics research / A, 2014. 763: p. 53 - 57 DOI: 10.1016/j.nima.2014.05.122. http://repository.gsi.de/record/83451

http://dx.doi.org/10.1016/j.nima.2014.05.122.

33. Granville, S., et al., Cu codoping control over magnetic precipitate formation in ZnCoO nanowires. Applied physics letters, 2014. 105(25): p. 252403 DOI: 10.1063/1.4904987. http://repository.gsi.de/record/97542

http://dx.doi.org/10.1063/1.4904987.

34. Gunst, J., et al., Dominant Secondary Nuclear Photoexcitation with the X-Ray Free-Electron Laser. Physical review letters, 2014. 112(8): p. 082501 DOI: 10.1103/PhysRevLett.112.082501. http://repository.gsi.de/record/64867

http://dx.doi.org/10.1103/PhysRevLett.112.082501.

35. Hahn, M., et al., Electron-ion recombination of $Fe^{12 +}$ forming $Fe^{11 +}$ : labratory measurements and theoretical calculations. The @astrophysical journal / 1, 2014. 788(1): p. 46 -53 DOI: 10.1088/0004-637X/788/1/46. http://repository.gsi.de/record/65699

http://dx.doi.org/10.1088/0004-637X/788/1/46.

36. Hayrapetyan, A.G., et al., Interaction of Relativistic Electron-Vortex Beams with Few-Cycle Laser Pulses. Physical review letters, 2014. 112(13): p. 134801 DOI: 10.1103/PhysRevLett.112.134801. http://repository.gsi.de/record/65688

http://dx.doi.org/10.1103/PhysRevLett.112.134801.

37. Hillenbrand, P.-M., et al., Electron-loss-to-continuum cusp in $U^{88+} +N_2$ collisions. Physical review / A, 2014. 90(4): p. 042713 DOI: 10.1103/PhysRevA.90.042713. http://repository.gsi.de/record/83437

http://dx.doi.org/10.1103/PhysRevA.90.042713.

38. Hillenbrand, P.-M., et al., Radiative-electron-capture-to-continuum cusp in $U^{88+} + N_2$ collisions and the high-energy endpoint of electron-nucleus bremsstrahlung. Physical review / A, 2014. 90(2): p. 022707 DOI: 10.1103/PhysRevA.90.022707. http://repository.gsi.de/record/67065

http://dx.doi.org/10.1103/PhysRevA.90.022707.

39. Hossain, U.H., et al., On-line and post irradiation analysis of swift heavy ion induced modification of PMMA (polymethyl-methacrylate). Nuclear instruments & methods in physics research / B, 2014. 326: p. 135 - 139 DOI: 10.1016/j.nimb.2013.10.074. http://repository.gsi.de/record/97606

http://dx.doi.org/10.1016/j.nimb.2013.10.074.

40. Hossain, U.H., F. Muench, and W. Ensinger, A comparative study on degradation characteristics of fluoropolymers irradiated by high energy heavy ions. RSC Advances, 2014. 4(91): p. 50171 - 50179 DOI: 10.1039/C4RA04635H. http://repository.gsi.de/record/97544

http://dx.doi.org/10.1039/C4RA04635H.

41. Hossain, U.H., T. Seidl, and W. Ensinger, Combined in situ infrared and mass spectrometric analysis of high-energy heavy ion induced degradation of polyvinyl polymers. Polymer chemistry, 2014. 5(3): p. 1001 - 1012 DOI: 10.1039/C3PY01062G. http://repository.gsi.de/record/97630

http://dx.doi.org/10.1039/C3PY01062G.

42. Innes, L.M., et al., Velocity Profiles in Pores with Undulating Opening Diameter and Their Importance for Resistive-Pulse Experiments. Analytical chemistry, 2014. 86(20): p. 10445 - 10453 DOI: 10.1021/ac502997h. http://repository.gsi.de/record/96791

http://dx.doi.org/10.1021/ac502997h.

43. Jagodziński, P., et al., Ray-tracing simulations of spherical Johann diffraction spectrometer for in-beam X-ray experiments. Nuclear instruments & methods in physics research / A, 2014. 753: p. 121 - 130 DOI: 10.1016/j.nima.2014.04.004. http://repository.gsi.de/record/83432

http://dx.doi.org/10.1016/j.nima.2014.04.004.

44. Jahrsetz, T., S. Fritzsche, and A. Surzhykov, Inelastic Raman scattering of light by hydrogenlike ions. Physical review / A, 2014. 89(4): p. 042501 DOI: 10.1103/PhysRevA.89.042501. http://repository.gsi.de/record/65571

http://dx.doi.org/10.1103/PhysRevA.89.042501.

45. Jakubaßa-Amundsen, D., et al., Relativistic theory for radiative forward electron emission in heavy ion-atom encounters. The @European physical journal / D, 2014. 68(12): p. 367 DOI: 10.1140/epjd/e2014-50574-7. http://repository.gsi.de/record/95697

http://dx.doi.org/10.1140/epjd/e2014-50574-7.

46. Jean, C., et al., Direct Observation of Gigahertz Coherent Guided Acoustic Phonons in Free-Standing Single Copper Nanowires. The @journal of physical chemistry letters, 2014. 5(23): p. 4100 - 4104 DOI: 10.1021/jz502170j. http://repository.gsi.de/record/95702

http://dx.doi.org/10.1021/jz502170j.

47. Kantsyrev, A.V., et al., TWAC-ITEP proton microscopy facility. Instruments and experimental techniques, 2014. 57(1): p. 1 - 10 DOI: 10.1134/S0020441214010151. http://repository.gsi.de/record/97347

http://dx.doi.org/10.1134/S0020441214010151.

48. Kozhedub, Y.S., et al., Relativistic calculations of x-ray emission following a $Xe-Bi^{83+}$ collision. Physical review / A, 2014. 90(4): p. 042709 DOI: 10.1103/PhysRevA.90.042709. http://repository.gsi.de/record/96792

http://dx.doi.org/10.1103/PhysRevA.90.042709.

49. Kreim, K., et al., Nuclear charge radii of potassium isotopes beyond. Physics letters / B, 2014. 731: p. 97 - 102 DOI: 10.1016/j.physletb.2014.02.012. http://repository.gsi.de/record/64789

http://dx.doi.org/10.1016/j.physletb.2014.02.012.

50. Kreim, S., et al., Competition between pairing correlations and deformation from the odd-even mass staggering of francium and radium isotopes. Physical review / C, 2014. 90(2): p. 024301 DOI: 10.1103/PhysRevC.90.024301. http://repository.gsi.de/record/67565

http://dx.doi.org/10.1103/PhysRevC.90.024301.

51. Kühl, T., et al., Strong-field physics using lasers and relativistic heavy ions at the high-energy storage ring HESR at FAIR, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 142003 DOI: 10.1088/1742-6596/488/14/142003. http://repository.gsi.de/record/65347

http://dx.doi.org/10.1088/1742-6596/488/14/142003.

52. Kühnel, M., et al., Observation of crystallization slowdown in supercooled parahydrogen and orthodeuterium quantum liquid mixtures. Physical review / B, 2014. 89(18): p. 180201 DOI: 10.1103/PhysRevB.89.180201. http://repository.gsi.de/record/95647

http://dx.doi.org/10.1103/PhysRevB.89.180201.

53. Kuttich, B., et al., Tailored nanochannels of nearly cylindrical geometry analysed by small angle X-ray scattering. Applied physics / A, 2014. 114(2): p. 387 - 392 DOI: 10.1007/s00339-013-8167-4. http://repository.gsi.de/record/97632

http://dx.doi.org/10.1007/s00339-013-8167-4.

54. Lang, M., et al., Swift heavy ion track formation in $Gd_{2}Zr_{2−x}Ti_{x}O_{7}$ pyrochlore: Effect of electronic energy loss. Nuclear instruments & methods in physics research / B, 2014. 336: p. 102 - 115 DOI: 10.1016/j.nimb.2014.06.019. http://repository.gsi.de/record/96806

http://dx.doi.org/10.1016/j.nimb.2014.06.019.

55. Lang, M., et al., Swift heavy ion-induced phase transformation in $Gd_2O_3$. Nuclear instruments & methods in physics research / B, 2014. 326: p. 121 - 125 DOI: 10.1016/j.nimb.2013.10.073. http://repository.gsi.de/record/97605

http://dx.doi.org/10.1016/j.nimb.2013.10.073.

56. Li, K., et al., Developments toward hard X-ray radiography on heavy-ion heated dense plasmas. Laser and particle beams, 2014. 32(04): p. 631 - 637 DOI: 10.1017/S0263034614000652. http://repository.gsi.de/record/95745

http://dx.doi.org/10.1017/S0263034614000652.

57. Li, W., et al., Effect of orientation on ion track formation in apatite and zircon. American mineralogist, 2014. 99(5-6): p. 1127 - 1132 DOI: 10.2138/am.2014.4669. http://repository.gsi.de/record/97631

http://dx.doi.org/10.2138/am.2014.4669.

58. Litvinov, Y., et al., Ilustration of accuracy of presently used nuclear-mass models. Acta physica Polonica / B, 2014. 45(10): p. 1979 - 1991 DOI: 10.5506/APhysPolB.45.1979. http://repository.gsi.de/record/95696

http://dx.doi.org/10.5506/APhysPolB.45.1979.

59. Lochmann, M., et al., Observation of the hyperfine transition in lithium-like bismuth $^{209}Bi^{80+}$ : Towards a test of QED in strong magnetic fields. Physical review / A, 2014. 90(3): p. 030501 DOI: 10.1103/PhysRevA.90.030501. http://repository.gsi.de/record/83435

http://dx.doi.org/10.1103/PhysRevA.90.030501.

60. Marx, B., et al., High precision measurement of undulator polarization in the regime of hard x-rays. Applied physics letters, 2014. 105(2): p. 024103 DOI: 10.1063/1.4890584. http://repository.gsi.de/record/83431

http://dx.doi.org/10.1063/1.4890584.

61. Matula, O., et al., Radiative capture of twisted electrons by bare ions. New journal of physics, 2014. 16(5): p. 053024 DOI: 10.1088/1367-2630/16/5/053024. http://repository.gsi.de/record/65672

http://dx.doi.org/10.1088/1367-2630/16/5/053024.

62. Miletich, R., et al., Static elasticity of cordierite I: Effect of heavy ion irradiation on the compressibility of hydrous cordierite. Physics and chemistry of minerals, 2014. 41(8): p. 579 - 591 DOI: 10.1007/s00269-014-0671-3. http://repository.gsi.de/record/97363

http://dx.doi.org/10.1007/s00269-014-0671-3.

63. Muench, F., et al., Polycarbonate activation for electroless plating by dimethylaminoborane absorption and subsequent nanoparticle deposition. Applied physics / A, 2014. 116(1): p. 287 - 294 DOI: 10.1007/s00339-013-8119-z. http://repository.gsi.de/record/97566

http://dx.doi.org/10.1007/s00339-013-8119-z.

64. Muench, F., et al., Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surface and coatings technology, 2014. 242: p. 100 - 108 DOI: 10.1016/j.surfcoat.2014.01.024. http://repository.gsi.de/record/97613

http://dx.doi.org/10.1016/j.surfcoat.2014.01.024.

65. Muench, F., et al., Hierarchically porous carbon membranes containing designed nanochannel architectures obtained by pyrolysis of ion-track etched polyimide. Materials chemistry and physics, 2014. 148(3): p. 846 - 853 DOI: 10.1016/j.matchemphys.2014.09.001. http://repository.gsi.de/record/95699

http://dx.doi.org/10.1016/j.matchemphys.2014.09.001.

66. Nasir, S., et al., Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS applied materials & interfaces, 2014. 6(15): p. 12486 - 12494 DOI: 10.1021/am502419j. http://repository.gsi.de/record/97549

http://dx.doi.org/10.1021/am502419j.

67. Papuga, J., et al., Shell structure of potassium isotopes deduced from their magnetic moments. Physical review / C, 2014. 90(3): p. 034321 DOI: 10.1103/PhysRevC.90.034321. http://repository.gsi.de/record/96933

http://dx.doi.org/10.1103/PhysRevC.90.034321.

68. Park, S., et al., Swift heavy ion irradiation-induced amorphization of $La_2Ti_2O_7$. Nuclear instruments & methods in physics research / B, 2014. 326: p. 145 - 149 DOI: 10.1016/j.nimb.2013.10.088. http://repository.gsi.de/record/97609

http://dx.doi.org/10.1016/j.nimb.2013.10.088.

69. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Rayleigh-Taylor linear growth at an interface between an elastoplastic solidand a viscous liquid. Physical review / E, 2014. 89(6): p. 063022 DOI: 10.1103/PhysRevE.89.063022. http://repository.gsi.de/record/97335

http://dx.doi.org/10.1103/PhysRevE.89.063022.

70. Prokůpek, J., et al., Development and first experimental tests of Faraday cup array. Review of scientific instruments, 2014. 85(1): p. 013302 DOI: 10.1063/1.4859496. http://repository.gsi.de/record/97356

http://dx.doi.org/10.1063/1.4859496.

71. Quint, W., et al., Magnetic Moment of the Bound Electron, in Fundamental Physics in Particle Traps / Quint, Wolfgang (Editor) ; Berlin, Heidelberg : Springer Berlin Heidelberg, 2014, Chapter 3 ; ISSN: 0081-3869=1615-0430 ; ISBN: 978-3-642-45200-0=978-3-642-45201-7 ; doi:10.1007/978-3-642-45201-7. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 73 - 135 DOI: 10.1007/978-3-642-45201-7_3. http://repository.gsi.de/record/184439

http://dx.doi.org/10.1007/978-3-642-45201-7_3.

72. Ramirez, P., et al., Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem, 2014. 1(4): p. 698 - 705 DOI: 10.1002/celc.201300255. http://repository.gsi.de/record/97565

http://dx.doi.org/10.1002/celc.201300255.

73. Reifarth, R. and Y. Litvinov, Measurements of neutron-induced reactions in inverse kinematics. Physical review / Special topics / Accelerators and beams, 2014. 17(1): p. 014701 DOI: 10.1103/PhysRevSTAB.17.014701. http://repository.gsi.de/record/97797

http://dx.doi.org/10.1103/PhysRevSTAB.17.014701.

74. Rodriguez, M.D., et al., SAXS and TEM investigation of ion tracks in neodymium-doped yttrium aluminium garnet. Nuclear instruments & methods in physics research / B, 2014. 326: p. 150 - 153 DOI: 10.1016/j.nimb.2013.10.076. http://repository.gsi.de/record/97572

http://dx.doi.org/10.1016/j.nimb.2013.10.076.

75. Schauries, D., et al., The shape of ion tracks in natural apatite. Nuclear instruments & methods in physics research / B, 2014. 326: p. 117 - 120 DOI: 10.1016/j.nimb.2013.10.071. http://repository.gsi.de/record/97611

http://dx.doi.org/10.1016/j.nimb.2013.10.071.

76. Scheidl, K.S., et al., Static elasticity of cordierite II: effect of molecular $CO_2$ channel constituents on the compressibility. Physics and chemistry of minerals, 2014. 41(8): p. 617 - 631 DOI: 10.1007/s00269-014-0675-z. http://repository.gsi.de/record/97364

http://dx.doi.org/10.1007/s00269-014-0675-z.

77. Schippers, S., et al., Storage-ring measurement of the hyperfine induced $2s2p ^3P_0 → 2s2 ^1S_0$ transition rate in berylliumlike sulfur, in 10.1088/1742-6596/488/6/062016. 2014, IOP Publ.: Lanzhou, China. p. 062016 DOI: 10.1088/1742-6596/488/6/062016. http://repository.gsi.de/record/65340

http://dx.doi.org/10.1088/1742-6596/488/6/062016.

78. Schmidt, R., et al., First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility. Physics of plasmas, 2014. 21(8): p. 080701 DOI: 10.1063/1.4892960. http://repository.gsi.de/record/97336

http://dx.doi.org/10.1063/1.4892960.

79. Scholz-Marggraf, H.M., et al., Absorption of twisted light by hydrogenlike atoms. Physical review / A, 2014. 90(1): p. 013425 DOI: 10.1103/PhysRevA.90.013425. http://repository.gsi.de/record/67564

http://dx.doi.org/10.1103/PhysRevA.90.013425.

80. Schulze, K.S., et al., Determination of the polarization state of x rays with the help of anomalous transmission. Applied physics letters, 2014. 104(15): p. 151110 DOI: 10.1063/1.4872180. http://repository.gsi.de/record/83430

http://dx.doi.org/10.1063/1.4872180.

81. Schwartz, J., et al., Local formation of nitrogen-vacancy centers in diamond by swift heavy ions. Journal of applied physics, 2014. 116(21): p. 214107 DOI: 10.1063/1.4903075. http://repository.gsi.de/record/97548

http://dx.doi.org/10.1063/1.4903075.

82. Senje, L., et al., Diagnostics for studies of novel laser ion acceleration mechanisms. Review of scientific instruments, 2014. 85(11): p. 113302 DOI: 10.1063/1.4900626. http://repository.gsi.de/record/97360

http://dx.doi.org/10.1063/1.4900626.

83. Sharkov, B. and D. Varentsov, Experiments on extreme states of matter towards HIF at FAIR. Nuclear instruments & methods in physics research / A, 2014. 733: p. 238 - 241 DOI: 10.1016/j.nima.2013.05.061. http://repository.gsi.de/record/97344

http://dx.doi.org/10.1016/j.nima.2013.05.061.

84. Shuai, P., et al., Charge and frequency resolved isochronous mass spectrometry and the mass of $^{51}Co$. Physics letters / B, 2014. 735: p. 327 - 331 DOI: 10.1016/j.physletb.2014.06.046. http://repository.gsi.de/record/67566

http://dx.doi.org/10.1016/j.physletb.2014.06.046.

85. Sivakov, V., et al., Silver nanostructures formation in porous Si/SiO$_2$ matrix. Journal of crystal growth, 2014. 400: p. 21 - 26 DOI: 10.1016/j.jcrysgro.2014.04.024. http://repository.gsi.de/record/97571

http://dx.doi.org/10.1016/j.jcrysgro.2014.04.024.

86. Smorra, C., et al., Towards a high-precision measurement of the antiproton magnetic moment. Hyperfine interactions, 2014. 228(1-3): p. 31 - 36 DOI: 10.1007/s10751-014-1018-7. http://repository.gsi.de/record/98073

http://dx.doi.org/10.1007/s10751-014-1018-7.

87. Sobiczewski, A. and Y. Litvinov, Predictive power of nuclear-mass models. Physical review / C, 2014. 90(1): p. 017302 DOI: 10.1103/PhysRevC.90.017302. http://repository.gsi.de/record/97798

http://dx.doi.org/10.1103/PhysRevC.90.017302.

88. Sobiczewski, A. and Y. Litvinov, Accuracy of theoretical descriptions of nuclear masses. Physical review / C, 2014. 89(2): p. 024311 DOI: 10.1103/PhysRevC.89.024311. http://repository.gsi.de/record/64925

http://dx.doi.org/10.1103/PhysRevC.89.024311.

89. Sorokin, M.V., et al., Modeling of defect accumulation in lithium fluoride crystals under irradiation with swift ions. Nuclear instruments & methods in physics research / B, 2014. 326: p. 307 - 310 DOI: 10.1016/j.nimb.2013.10.033. http://repository.gsi.de/record/97607

http://dx.doi.org/10.1016/j.nimb.2013.10.033.

90. Stöhlker, T., et al., SPARC collaboration: new strategy for storage ring physics at FAIR. Hyperfine interactions, 2014. 227(1-3): p. 45 - 53 DOI: 10.1007/s10751-014-1047-2. http://repository.gsi.de/record/95648

http://dx.doi.org/10.1007/s10751-014-1047-2.

91. Tahir, N.A., et al., Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research. Physical review / E, 2014. 90(6): p. 063112 DOI: 10.1103/PhysRevE.90.063112. http://repository.gsi.de/record/97338

http://dx.doi.org/10.1103/PhysRevE.90.063112.

92. Tahir, N.A., et al., Three-dimensional thermal simulations of thin solid carbonfoils for charge stripping of high current uranium ion beams at a proposed new heavy-ion linac at GSI. Physical review / Special topics / Accelerators and beams, 2014. 17(4): p. 041003 DOI: 10.1103/PhysRevSTAB.17.041003. http://repository.gsi.de/record/83429

http://dx.doi.org/10.1103/PhysRevSTAB.17.041003.

93. Tashenov, S., et al., Electron polarimetry with bremsstrahlung, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 012057 DOI: 10.1088/1742-6596/488/1/012057. http://repository.gsi.de/record/65341

http://dx.doi.org/10.1088/1742-6596/488/1/012057.

94. Tashenov, S., et al., Bremsstrahlung polarization correlations and their application for polarimetry of electron beams. 28th International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC), 2014. 488(4): p. 042021 DOI: 10.1088/1742-6596/488/4/042021. http://repository.gsi.de/record/67073

http://dx.doi.org/10.1088/1742-6596/488/4/042021.

95. Tashenov, S., et al., Observation of Coherence in the Time-Reversed Relativistic Photoelectric Effect. Physical review letters, 2014. 113(11): p. 113001 DOI: 10.1103/PhysRevLett.113.113001. http://repository.gsi.de/record/83428

http://dx.doi.org/10.1103/PhysRevLett.113.113001.

96. Tashenov, S., et al., First observation of correlated photons emitted by heavy highly charged ions in the process of radiative recombination, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 082023 - DOI: 10.1088/1742-6596/488/8/082023. http://repository.gsi.de/record/65348

http://dx.doi.org/10.1088/1742-6596/488/8/082023.

97. Tiedemann, D., et al., A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI. Nuclear instruments & methods in physics research / A, 2014. 764: p. 387 - 393 DOI: 10.1016/j.nima.2014.08.017. http://repository.gsi.de/record/83427

http://dx.doi.org/10.1016/j.nima.2014.08.017.

98. Tracy, C.L., et al., Defect accumulation in $ThO_2$ irradiated with swift heavy ions. Nuclear instruments & methods in physics research / B, 2014. 326: p. 169 - 173 DOI: 10.1016/j.nimb.2013.08.070. http://repository.gsi.de/record/65809

http://dx.doi.org/10.1016/j.nimb.2013.08.070.

99. Tu, X.L., et al., A survey of Coulomb displacement energies and questions on the anomalous behavior in the upper fp-shell. Journal of physics / G, 2014. 41(2): p. 025104 - DOI: 10.1088/0954-3899/41/2/025104. http://repository.gsi.de/record/64678

http://dx.doi.org/10.1088/0954-3899/41/2/025104.

100. Ulmer, S., et al., The magnetic moments of the proton and the antiproton, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 012033 DOI: 10.1088/1742-6596/488/1/012033. http://repository.gsi.de/record/65342

http://dx.doi.org/10.1088/1742-6596/488/1/012033.

101. Velasco, A.E., et al., Flow and evaporation in single micrometer and nanometer scale pipes. Applied physics letters, 2014. 105(3): p. 033101 DOI: 10.1063/1.4890985. http://repository.gsi.de/record/97541

http://dx.doi.org/10.1063/1.4890985.

102. Vogel, M., et al., Resistive and sympathetic cooling of highly-charged-ion clouds in a Penning trap. Physical review / A, 2014. 90(4): p. 043412 DOI: 10.1103/PhysRevA.90.043412. http://repository.gsi.de/record/83492

http://dx.doi.org/10.1103/PhysRevA.90.043412.

103. Wagner, F., et al., Pre-plasma formation in experiments using petawatt lasers. Optics express, 2014. 22(24): p. 29505 - DOI: 10.1364/OE.22.029505. http://repository.gsi.de/record/95703

http://dx.doi.org/10.1364/OE.22.029505.

104. Wagner, F., et al., Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification. Applied physics / B, 2014. 116(2): p. 429 - 435 DOI: 10.1007/s00340-013-5714-9. http://repository.gsi.de/record/97361

http://dx.doi.org/10.1007/s00340-013-5714-9.

105. Wen, W., et al., Laser cooling of stored relativistic ion beams with large momentum spreads using a laser system with a wide scanning range, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 122005 - DOI: 10.1088/1742-6596/488/12/122005. http://repository.gsi.de/record/65344

http://dx.doi.org/10.1088/1742-6596/488/12/122005.

106. White, T.G., et al., Electron-Ion Equilibration in Ultrafast Heated Graphite. Physical review letters, 2014. 112(14): p. 145005 DOI: 10.1103/PhysRevLett.112.145005. http://repository.gsi.de/record/97358

http://dx.doi.org/10.1103/PhysRevLett.112.145005.

107. Zabels, R., et al., MeV–GeV ion induced dislocation loops in LiF crystals. Nuclear instruments & methods in physics research / B, 2014. 326: p. 318 - 321 DOI: 10.1016/j.nimb.2013.10.043. http://repository.gsi.de/record/97616

http://dx.doi.org/10.1016/j.nimb.2013.10.043.

108. Zaytsev, V.A., et al., Parity-nonconservation effect in the dielectronic recombination of polarized electrons with heavy He-like ions. Physical review / A, 2014. 89(3): p. 032703 DOI: 10.1103/PhysRevA.89.032703. http://repository.gsi.de/record/83426

http://dx.doi.org/10.1103/PhysRevA.89.032703.

109. Zhang, H.Q., et al., Transmission of highly charged ions through nanocapillaries of noncircular cross sections. Journal of physics / Conference Series, 2014. 488(1): p. 012035 DOI: 10.1088/1742-6596/488/1/012035. http://repository.gsi.de/record/97547

http://dx.doi.org/10.1088/1742-6596/488/1/012035.

110. Zhang, W., et al., Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe. Nuclear instruments & methods in physics research / A, 2014. 756: p. 1 - 5 DOI: 10.1016/j.nima.2014.04.051. http://repository.gsi.de/record/66751

http://dx.doi.org/10.1016/j.nima.2014.04.051.

111. Zhang, W., et al., A timing detector with pulsed high-voltage power supply for mass measurements at CSRe. Nuclear instruments & methods in physics research / A, 2014. 755: p. 38 - 43 DOI: 10.1016/j.nima.2014.04.031. http://repository.gsi.de/record/66546

http://dx.doi.org/10.1016/j.nima.2014.04.031.

112. Zhao, H.Y., et al., High-brilliance double-stage soft x-ray laser pumped by multiple pulses applied in grazing incidence. Journal of physics / Conference Series, 2014. 488(14): p. 142004 DOI: 10.1088/1742-6596/488/14/142004. http://repository.gsi.de/record/97357

http://dx.doi.org/10.1088/1742-6596/488/14/142004.

113. Zubova, N.A., et al., Relativistic calculations of the isotope shifts in highly charged Li-like ions. Physical review / A, 2014. 90(6): p. 062512 DOI: 10.1103/PhysRevA.90.062512. http://repository.gsi.de/record/97789

http://dx.doi.org/10.1103/PhysRevA.90.062512.

 

2015

1. Akber, A., et al., Increased isomeric lifetime of hydrogen-like $^{192m}Os$. Physical review / C, 2015. 91(3): p. 031301 DOI: 10.1103/PhysRevC.91.031301. http://repository.gsi.de/record/97791

http://dx.doi.org/10.1103/PhysRevC.91.031301.

2. Alencar, I., et al., In situ Resonant Ultrasound Spectroscopy during irradiation of solids with relativistic heavy ions. Acta materialia, 2015. 89: p. 60 - 72 DOI: 10.1016/j.actamat.2015.01.031. http://repository.gsi.de/record/180929

http://dx.doi.org/10.1016/j.actamat.2015.01.031.

3. Ali, M., et al., Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores. ACS applied materials & interfaces, 2015. 7(35): p. 19541 - 19545 DOI: 10.1021/acsami.5b06015. http://repository.gsi.de/record/184687

http://dx.doi.org/10.1021/acsami.5b06015.

4. Ali, M., S. Nasir, and W. Ensinger, Bioconjugation-induced ionic current rectification in aptamer-modified single cylindrical nanopores. Chemical communications, 2015. 51(16): p. 3454 - 3457 DOI: 10.1039/C5CC00257E. http://repository.gsi.de/record/161263

http://dx.doi.org/10.1039/C5CC00257E.

5. Andelkovic, Z., et al., Status of deceleration and laser spectroscopy of highly charged ions at HITRAP. Hyperfine interactions, 2015. 234: p. 1-8 DOI: 10.1007/s10751-015-1199-8. http://repository.gsi.de/record/184417

http://dx.doi.org/10.1007/s10751-015-1199-8.

6. Andelkovic, Z., et al., Beamline for low-energy transport of highly charged ions at HITRAP. Nuclear instruments & methods, 2015. 795: p. 109 - 114 DOI: 10.1016/j.nima.2015.05.055. http://repository.gsi.de/record/184422

http://dx.doi.org/10.1016/j.nima.2015.05.055.

7. Andersson, J., et al., Triple ionization of atomic Cd involving 4 p$^{−1}$ and 4 s$^{−1}$ inner-shell holes. Physical review / A, 2015. 92(2): p. 023414 DOI: 10.1103/PhysRevA.92.023414. http://repository.gsi.de/record/186849

http://dx.doi.org/10.1103/PhysRevA.92.023414.

8. Andreev, N.E., et al., Interaction of annular-focused laser beams with solid targets. Laser and particle beams, 2015. 33(03): p. 541 - 550 DOI: 10.1017/S0263034615000580. http://repository.gsi.de/record/180921

http://dx.doi.org/10.1017/S0263034615000580.

9. Artemyev, A.N. and A. Surzhykov, Quantum Electrodynamical Corrections to Energy Levels of Diatomic Quasimolecules. Physical review letters, 2015. 114(24): p. 243004 DOI: 10.1103/PhysRevLett.114.243004. http://repository.gsi.de/record/186850

http://dx.doi.org/10.1103/PhysRevLett.114.243004.

10. Atanasov, D., et al., Precision Mass Measurements of $^{129 – 131}$Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process. Physical review letters, 2015. 115(23): p. 232501 DOI: 10.1103/PhysRevLett.115.232501. http://repository.gsi.de/record/184247

http://dx.doi.org/10.1103/PhysRevLett.115.232501.

11. Atanasov, D., et al., Between atomic and nuclear physics: radioactive decays of highly-charged ions. Journal of physics / B, 2015. 48(14): p. 144024 DOI: 10.1088/0953-4075/48/14/144024. http://repository.gsi.de/record/109239

http://dx.doi.org/10.1088/0953-4075/48/14/144024.

12. Aurand, B., et al., Reduction of X-ray generation in high-intensity laser ion acceleration. Applied physics / B, 2015. 118(2): p. 247 - 251 DOI: 10.1007/s00340-014-5979-7. http://repository.gsi.de/record/180918

http://dx.doi.org/10.1007/s00340-014-5979-7.

13. Banaś, D., et al., Subshell-selective x-ray studies of radiative recombination of U$^{92+}$ ions with electrons for very low relative energies. Physical review / A, 2015. 92(3): p. 032710 DOI: 10.1103/PhysRevA.92.032710. http://repository.gsi.de/record/183605

http://dx.doi.org/10.1103/PhysRevA.92.032710.

14. Belikov, R.S., et al., Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation. Quantum electronics, 2015. 45(5): p. 421 - 425 DOI: 10.1070/QE2015v045n05ABEH015759. http://repository.gsi.de/record/180926

http://dx.doi.org/10.1070/QE2015v045n05ABEH015759.

15. Bender, M., et al., Material-related issues at high-power and high-energy ion beam facilities, in FAIRNESS 2014. 2015, IOP Publ.: Vietri sul Mare, Italy. p. 012039 DOI: 10.1088/1742-6596/599/1/012039. http://repository.gsi.de/record/180938

http://dx.doi.org/10.1088/1742-6596/599/1/012039.

16. Bernhardt, D., et al., Simultaneous measurement of photorecombination and electron-impact ionization of Fe$^{14+}$ ions. Journal of physics / Conference Series, 2015. 635(5): p. 052002 DOI: 10.1088/1742-6596/635/5/052002. http://repository.gsi.de/record/184280

http://dx.doi.org/10.1088/1742-6596/635/5/052002.

17. Bernhardt, D., et al., Electron-ion collision spectroscopy: Lithium-like xenon ions. Physical review / A, 2015. 91(1): p. 012710 DOI: 10.1103/PhysRevA.91.012710. http://repository.gsi.de/record/109238

http://dx.doi.org/10.1103/PhysRevA.91.012710.

18. Bernhardt, D., et al., Spectroscopy of berylliumlike xenon ions using dielectronic recombination. Journal of physics / B, 2015. 48(14): p. 144008 DOI: 10.1088/0953-4075/48/14/144008. http://repository.gsi.de/record/109237

http://dx.doi.org/10.1088/0953-4075/48/14/144008.

19. Bernhardt, H., et al., Engineering crystalline Au nanoparticles of anisotropic shape in epitaxially grown high-index SrTiO$_3$. Journal of materials science, 2015. 50(16): p. 5562 - 5570 DOI: 10.1007/s10853-015-9103-0. http://repository.gsi.de/record/186851

http://dx.doi.org/10.1007/s10853-015-9103-0.

20. Beyer, H., et al., Crystal optics for precision x-ray spectroscopy on highly charged ions—conception and proof. Journal of physics / B, 2015. 48(14): p. 144010 DOI: 10.1088/0953-4075/48/14/144010. http://repository.gsi.de/record/109236

http://dx.doi.org/10.1088/0953-4075/48/14/144010.

21. Bierbach, J., et al., Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape. Optics express, 2015. 23(9): p. 12321 DOI: 10.1364/OE.23.012321. http://repository.gsi.de/record/186889

http://dx.doi.org/10.1364/OE.23.012321.

22. Bieroń, J., et al., Ab initio MCDHF calculations of electron–nucleus interactionsen. Physica scripta, 2015. 90(5): p. 054011 DOI: 10.1088/0031-8949/90/5/054011. http://repository.gsi.de/record/186878

http://dx.doi.org/10.1088/0031-8949/90/5/054011.

23. Bin, J.H., et al., Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas. Physical review letters, 2015. 115(6): p. 064801 DOI: 10.1103/PhysRevLett.115.064801. http://repository.gsi.de/record/186912

http://dx.doi.org/10.1103/PhysRevLett.115.064801.

24. Blumenhagen, K.-H., et al., Elastic scattering of linearly polarized hard x-rays. Journal of physics / Conference Series, 2015. 635(9): p. 092072 DOI: 10.1088/1742-6596/635/9/092072. http://repository.gsi.de/record/184275

http://dx.doi.org/10.1088/1742-6596/635/9/092072.

25. Blumenhagen, K.-H., et al., Characterization of a double-sided Si(Li) strip Compton polarimeter. Journal of physics / Conference Series, 2015. 583: p. 012043 - DOI: 10.1088/1742-6596/583/1/012043. http://repository.gsi.de/record/96941

http://dx.doi.org/10.1088/1742-6596/583/1/012043.

26. Blumenhagen, K.-H., et al., Identification and reduction of unwanted stray radiation using an energy- and position-sensitive Compton polarimeter. Physica scripta, 2015. T166: p. 014032 DOI: 10.1088/0031-8949/2015/T166/014032. http://repository.gsi.de/record/183254

http://dx.doi.org/10.1088/0031-8949/2015/T166/014032.

27. Botermann, B., et al., Erratum: Test of Time Dilation Using Stored $Li^+$ Ions as Clocks at Relativistic Speed [Phys. Rev. Lett. 113 , 120405 (2014)]. Physical review letters, 2015. 114(23): p. 239902 DOI: 10.1103/PhysRevLett.114.239902. http://repository.gsi.de/record/109139

http://dx.doi.org/10.1103/PhysRevLett.114.239902.

28. Brabetz, C., et al., Laser-driven ion acceleration with hollow laser beams. Physics of plasmas, 2015. 22(1): p. 013105 - DOI: 10.1063/1.4905638. http://repository.gsi.de/record/97474

http://dx.doi.org/10.1063/1.4905638.

29. Brandau, C., et al., Storage-ring experiments on dielectronic recombination at the interface of atomic and nuclear physics. Physica scripta, 2015. T166: p. 014022 DOI: 10.1088/0031-8949/2015/T166/014022. http://repository.gsi.de/record/183243

http://dx.doi.org/10.1088/0031-8949/2015/T166/014022.

30. Brandau, C., et al., High-resolution dielectronic recombination experiments at the upcoming CRYRING@ESR facility. Journal of physics / Conference Series, 2015. 635(2): p. 022084 DOI: 10.1088/1742-6596/635/2/022084. http://repository.gsi.de/record/184281

http://dx.doi.org/10.1088/1742-6596/635/2/022084.

31. Braun, J., et al., Search for inhomogeneous phases in fermionic models. Physical review / D, 2015. 91(11): p. 116006 DOI: 10.1103/PhysRevD.91.116006. http://repository.gsi.de/record/186853

http://dx.doi.org/10.1103/PhysRevD.91.116006.

32. Breitkopf, S., et al., Stack and dump: Peak-power scaling by coherent pulse addition in passive cavities. European physical journal special topics, 2015. 224(13): p. 2573 - 2577 DOI: 10.1140/epjst/e2015-02567-7. http://repository.gsi.de/record/186886

http://dx.doi.org/10.1140/epjst/e2015-02567-7.

33. Breuer, L., et al., Time-of-flight secondary neutral & ion mass spectrometry using swift heavy ions. Nuclear instruments & methods in physics research / B, 2015. 365: p. 482 - 489 DOI: 10.1016/j.nimb.2015.07.117. http://repository.gsi.de/record/183627

http://dx.doi.org/10.1016/j.nimb.2015.07.117.

34. Burkart, F., et al., Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN. Journal of applied physics, 2015. 118(5): p. 055902 DOI: 10.1063/1.4927721. http://repository.gsi.de/record/180871

http://dx.doi.org/10.1063/1.4927721.

35. Burr, L., et al., Surface Enrichment in Au–Ag Alloy Nanowires and Investigation of the Dealloying Process. The @journal of physical chemistry <Washington, DC> / C, 2015. 119(36): p. 20949 - 20956 DOI: 10.1021/acs.jpcc.5b05596. http://repository.gsi.de/record/184675

http://dx.doi.org/10.1021/acs.jpcc.5b05596.

36. Busold, S., et al., Towards highest peak intensities for ultra-short MeV-range ion bunches. Scientific reports, 2015. 5: p. 12459 DOI: 10.1038/srep12459. http://repository.gsi.de/record/180861

http://dx.doi.org/10.1038/srep12459.

37. Cassinelli, M., et al., Structural and compositional characterization of Bi$_{1−x}$Sb$_x$ nanowire arrays grown by pulsed deposition to improve growth uniformity. Nuclear instruments & methods in physics research / B, 2015. 365: p. 668 - 674 DOI: 10.1016/j.nimb.2015.07.107. http://repository.gsi.de/record/183624

http://dx.doi.org/10.1016/j.nimb.2015.07.107.

38. Cayzac, W., et al., Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities. Physical review / E, 2015. 92(5): p. 053109 DOI: 10.1103/PhysRevE.92.053109. http://repository.gsi.de/record/183580

http://dx.doi.org/10.1103/PhysRevE.92.053109.

39. Chen, R.J., et al., Simulations of the isochronous mass spectrometry at the HIRFL-CSR. Physica scripta, 2015. T166: p. 014044 DOI: 10.1088/0031-8949/2015/T166/014044. http://repository.gsi.de/record/181065

http://dx.doi.org/10.1088/0031-8949/2015/T166/014044.

40. Chen, X., et al., Report on a computer-controlled automatic test platform for precision RF cavity characterizations. Physica scripta, 2015. T166: p. 014061 DOI: 10.1088/0031-8949/2015/T166/014061. http://repository.gsi.de/record/183602

http://dx.doi.org/10.1088/0031-8949/2015/T166/014061.

41. de Vries, O., et al., Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization. Optics express, 2015. 23(15): p. 19586 DOI: 10.1364/OE.23.019586. http://repository.gsi.de/record/186913

http://dx.doi.org/10.1364/OE.23.019586.

42. Dedera, S., et al., On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions. Nuclear instruments & methods in physics research / B, 2015. 365: p. 564 - 568 DOI: 10.1016/j.nimb.2015.09.079. http://repository.gsi.de/record/183621

http://dx.doi.org/10.1016/j.nimb.2015.09.079.

43. Doherty, D.T., et al., Nuclear transfer reaction measurements at the ESR—for the investigation of the astrophysical $^{15}O(α,γ )^{19}Ne$ reaction. Physica scripta, 2015. T166: p. 014007 DOI: 10.1088/0031-8949/2015/T166/014007. http://repository.gsi.de/record/181071

http://dx.doi.org/10.1088/0031-8949/2015/T166/014007.

44. Doria, D., et al., Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions. Review of scientific instruments, 2015. 86(12): p. 123302 DOI: 10.1063/1.4935582. http://repository.gsi.de/record/186915

http://dx.doi.org/10.1063/1.4935582.

45. Ecker, B., et al., Double-stage soft x-ray laser pumped by multiple pulses applied in grazing incidence. Journal of physics / B, 2015. 48(14): p. 144009 DOI: 10.1088/0953-4075/48/14/144009. http://repository.gsi.de/record/180953

http://dx.doi.org/10.1088/0953-4075/48/14/144009.

46. Eidam, T., et al., Divided-pulse amplification for terawatt-class fiber lasers. European physical journal special topics, 2015. 224(13): p. 2567 - 2571 DOI: 10.1140/epjst/e2015-02566-8. http://repository.gsi.de/record/186918

http://dx.doi.org/10.1140/epjst/e2015-02566-8.

47. Eliav, E., S. Fritzsche, and U. Kaldor, Electronic structure theory of the superheavy elements. Nuclear physics <Amsterdam> / A, 2015. 944: p. 518 - 550 DOI: 10.1016/j.nuclphysa.2015.06.017. http://repository.gsi.de/record/205473

http://dx.doi.org/10.1016/j.nuclphysa.2015.06.017.

48. Fedorov, F.S., et al., The gas multisensor chip fabricated by direct electrochemical deposition of tin oxide. 2015 IEEE Sensors, 2015. 0: p. 978-1-4799-8203-5 DOI: 10.1109/ICSENS.2015.7370406. http://repository.gsi.de/record/201229

http://dx.doi.org/10.1109/ICSENS.2015.7370406.

49. Fritzsche, S., et al., Photoexcitations of many-electron atoms and ions by twisted light. Journal of physics / Conference Series, 2015. 635(9): p. 092029 DOI: 10.1088/1742-6596/635/9/092029. http://repository.gsi.de/record/184292

http://dx.doi.org/10.1088/1742-6596/635/9/092029.

50. Fritzsche, S., A. Surzhykov, and A. Volotka, Relativistically prolonged lifetime of the 2s2p $^3P_0$ level of zeronuclear-spin beryllium-like ions. New journal of physics, 2015. 17(10): p. 103009 DOI: 10.1088/1367-2630/17/10/103009. http://repository.gsi.de/record/161449

http://dx.doi.org/10.1088/1367-2630/17/10/103009.

51. Frömmgen, N., et al., Collinear laser spectroscopy of atomic cadmium. The @European physical journal / D, 2015. 69(6): p. 164 DOI: 10.1140/epjd/e2015-60219-0. http://repository.gsi.de/record/186887

http://dx.doi.org/10.1140/epjd/e2015-60219-0.

52. Gaida, C., et al., Self-compression in a solid fiber to 24  MW peak power with few-cycle pulses at 2  μm wavelength. Optics letters, 2015. 40(22): p. 5160 DOI: 10.1364/OL.40.005160. http://repository.gsi.de/record/186890

http://dx.doi.org/10.1364/OL.40.005160.

53. Gaida, C., et al., Coherent combination of two Tm-doped fiber amplifiers. Optics letters, 2015. 40(10): p. 2301 - DOI: 10.1364/OL.40.002301. http://repository.gsi.de/record/186854

http://dx.doi.org/10.1364/OL.40.002301.

54. Gaßner, T. and H. Beyer, Spatial characterization of the internal gas target at the ESR for the FOCAL experiment. Physica scripta, 2015. T166: p. 014052 DOI: 10.1088/0031-8949/2015/T166/014052. http://repository.gsi.de/record/183266

http://dx.doi.org/10.1088/0031-8949/2015/T166/014052.

55. Gebhardt, M., et al., Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber. Optics letters, 2015. 40(12): p. 2770 - DOI: 10.1364/OL.40.002770. http://repository.gsi.de/record/186855

http://dx.doi.org/10.1364/OL.40.002770.

56. Gebhardt, M., et al., Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses. Optics express, 2015. 23(11): p. 13776 DOI: 10.1364/OE.23.013776. http://repository.gsi.de/record/186891

http://dx.doi.org/10.1364/OE.23.013776.

57. Geithner, R., et al., A squid-based beam current monitor for FAIR/CRYRING. Physica scripta, 2015. T166: p. 014057 DOI: 10.1088/0031-8949/2015/T166/014057. http://repository.gsi.de/record/183600

http://dx.doi.org/10.1088/0031-8949/2015/T166/014057.

58. Gies, H., F. Karbstein, and N. Seegert, Quantum reflection of photons off spatio-temporal electromagnetic field inhomogeneities. New journal of physics, 2015. 17(4): p. 043060 DOI: 10.1088/1367-2630/17/4/043060. http://repository.gsi.de/record/186856

http://dx.doi.org/10.1088/1367-2630/17/4/043060.

59. Glorius, J., Y. Litvinov, and R. Reifarth, Neutron-induced reaction studies using stored ions. Physica scripta, 2015. T166: p. 014008 DOI: 10.1088/0031-8949/2015/T166/014008. http://repository.gsi.de/record/181062

http://dx.doi.org/10.1088/0031-8949/2015/T166/014008.

60. Gomez, V., et al., Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific reports, 2015. 5: p. 9501 DOI: 10.1038/srep09501. http://repository.gsi.de/record/180925

http://dx.doi.org/10.1038/srep09501.

61. Gomez, V., et al., Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Applied physics letters, 2015. 106(7): p. 073701 DOI: 10.1063/1.4909532. http://repository.gsi.de/record/161259

http://dx.doi.org/10.1063/1.4909532.

62. Gorda, O., et al., Ion-optical design of CRYRING@ESR. Physica scripta, 2015. T166: p. 014043 DOI: 10.1088/0031-8949/2015/T166/014043. http://repository.gsi.de/record/183244

http://dx.doi.org/10.1088/0031-8949/2015/T166/014043.

63. Gorges, C., et al., Isotope shift of $^{40,42,44,48}$Ca in the 4s $^2S_{1/2}$ → 4p $^2P_{3/2}$ transition. Journal of physics / B, 2015. 48(24): p. 245008 - DOI: 10.1088/0953-4075/48/24/245008. http://repository.gsi.de/record/180945

http://dx.doi.org/10.1088/0953-4075/48/24/245008.

64. Guerra, M., et al., Electron impact ionization cross-sections for few-electron uranium ions. Journal of physics / B, 2015. 48(14): p. 144027 DOI: 10.1088/0953-4075/48/14/144027. http://repository.gsi.de/record/109138

http://dx.doi.org/10.1088/0953-4075/48/14/144027.

65. Gumberidze, A., T. Stöhlker, and Y. Litvinov, Atomic physics at the future facility for antiproton and ion research: status report 2014. Physica scripta, 2015. T166: p. 014076 DOI: 10.1088/0031-8949/2015/T166/014076. http://repository.gsi.de/record/183250

http://dx.doi.org/10.1088/0031-8949/2015/T166/014076.

66. Gumberidze, A., et al., Electron- and proton-impact excitation of He-like uranium. Journal of physics / Conference Series, 2015. 635(2): p. 022063 DOI: 10.1088/1742-6596/635/2/022063. http://repository.gsi.de/record/184261

http://dx.doi.org/10.1088/1742-6596/635/2/022063.

67. Gumberidze, A., et al., Ground-state excitation of heavy highly-charged ions. Journal of physics / B, 2015. 48(14): p. 144006 DOI: 10.1088/0953-4075/48/14/144006. http://repository.gsi.de/record/109137

http://dx.doi.org/10.1088/0953-4075/48/14/144006.

68. Hädrich, S., et al., Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light, 2015. 4(8): p. e320 - DOI: 10.1038/lsa.2015.93. http://repository.gsi.de/record/186857

http://dx.doi.org/10.1038/lsa.2015.93.

69. Hagmann, S., et al., The magnetic toroidal sector: a broad-band electron-positron pair spectrometer. Journal of physics / Conference Series, 2015. 635(2): p. 022046 DOI: 10.1088/1742-6596/635/2/022046. http://repository.gsi.de/record/184263

http://dx.doi.org/10.1088/1742-6596/635/2/022046.

70. Hahn, M., et al., Storage ring cross section measurements for electron impact ionization of Fe$^{7+}$. The @astrophysical journal / 1, 2015. 813(1): p. 16 DOI: 10.1088/0004-637X/813/1/16. http://repository.gsi.de/record/161450

http://dx.doi.org/10.1088/0004-637X/813/1/16.

71. Hahn, T., et al., Broadband XUV polarimetry of high harmonics from plasma surfaces using multiple Fresnel reflections. Applied physics / B, 2015. 118(2): p. 241 - 245 DOI: 10.1007/s00340-014-5977-9. http://repository.gsi.de/record/180964

http://dx.doi.org/10.1007/s00340-014-5977-9.

72. Heeg, K.P., et al., Tunable Subluminal Propagation of Narrow-band X-Ray Pulses. Physical review letters, 2015. 114(20): p. 203601 DOI: 10.1103/PhysRevLett.114.203601. http://repository.gsi.de/record/186921

http://dx.doi.org/10.1103/PhysRevLett.114.203601.

73. Hengstler, D., et al., Towards FAIR: first measurements of metallic magnetic calorimeters for high-resolution x-ray spectroscopy at GSI. Physica scripta, 2015. T166: p. 014054 DOI: 10.1088/0031-8949/2015/T166/014054. http://repository.gsi.de/record/183264

http://dx.doi.org/10.1088/0031-8949/2015/T166/014054.

74. Herfurth, F., et al., The HITRAP facility for slow highly charged ions. Physica scripta, 2015. T166: p. 014065 DOI: 10.1088/0031-8949/2015/T166/014065. http://repository.gsi.de/record/181059

http://dx.doi.org/10.1088/0031-8949/2015/T166/014065.

75. Hillenbrand, P.-M., et al., Electron-capture-to-continuum cusp in U$^{88+}$+N$_2$ collisions. Physical review / A, 2015. 91(2): p. 022705 DOI: 10.1103/PhysRevA.91.022705. http://repository.gsi.de/record/183597

http://dx.doi.org/10.1103/PhysRevA.91.022705.

76. Hillenbrand, P.-M., et al., Electron emission spectra of U$^{28+}$ -ions colliding with gaseous targets. Journal of physics / Conference Series, 2015. 635(2): p. 022049 DOI: 10.1088/1742-6596/635/2/022049. http://repository.gsi.de/record/184273

http://dx.doi.org/10.1088/1742-6596/635/2/022049.

77. Hillenbrand, P.-M., et al., Forward-angle electron spectroscopy in heavy-ion atom collisions studied at the ESR. Journal of physics / Conference Series, 2015. 635(2): p. 022005 DOI: 10.1088/1742-6596/635/2/022005. http://repository.gsi.de/record/184262

http://dx.doi.org/10.1088/1742-6596/635/2/022005.

78. Hillenbrand, P.-M., et al., Forward-angle electron spectroscopy in heavy-ion atom collisions studied at the ESR. Journal of physics / Conference Series, 2015. 635(1): p. 012011 DOI: 10.1088/1742-6596/635/1/012011. http://repository.gsi.de/record/183270

http://dx.doi.org/10.1088/1742-6596/635/1/012011.

79. Hillenbrand, P.-M., et al., Experimental concepts of positron spectroscopy at HESR. Physica scripta, 2015. T166: p. 014026 DOI: 10.1088/0031-8949/2015/T166/014026. http://repository.gsi.de/record/181067

http://dx.doi.org/10.1088/0031-8949/2015/T166/014026.

80. Hoffmann, A., M. Zürch, and C. Spielmann, Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber. Applied Sciences, 2015. 5(4): p. 1310 - 1322 DOI: 10.3390/app5041310. http://repository.gsi.de/record/186859

http://dx.doi.org/10.3390/app5041310.

81. Holmberg, J., et al., QED corrections to radiative recombination and radiative decay of heavy hydrogenlike ions. Physical review / A, 2015. 92(4): p. 042510 DOI: 10.1103/PhysRevA.92.042510. http://repository.gsi.de/record/186860

http://dx.doi.org/10.1103/PhysRevA.92.042510.

82. Höppner, H., et al., An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers. New journal of physics, 2015. 17(5): p. 053020 DOI: 10.1088/1367-2630/17/5/053020. http://repository.gsi.de/record/186892

http://dx.doi.org/10.1088/1367-2630/17/5/053020.

83. Hornung, M., et al., Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast. Applied Sciences, 2015. 5(4): p. 1970 - 1979 DOI: 10.3390/app5041970. http://repository.gsi.de/record/186893

http://dx.doi.org/10.3390/app5041970.

84. Horst, F., et al., A TLD-based ten channel system for the spectrometry of bremsstrahlung generated by laser-matter interaction. Nuclear instruments & methods in physics research / A, 2015. 782: p. 69 - 76 DOI: 10.1016/j.nima.2015.02.010. http://repository.gsi.de/record/180870

http://dx.doi.org/10.1016/j.nima.2015.02.010.

85. Hubert, C., et al., Swift heavy ion-induced radiation damage in isotropic graphite studied by micro-indentation and in-situ electrical resistivity. Nuclear instruments & methods in physics research / B, 2015. 365: p. 509 - 514 DOI: 10.1016/j.nimb.2015.08.056. http://repository.gsi.de/record/183626

http://dx.doi.org/10.1016/j.nimb.2015.08.056.

86. Jauregui, C., et al., Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening. Optics express, 2015. 23(16): p. 20203 DOI: 10.1364/OE.23.020203. http://repository.gsi.de/record/186894

http://dx.doi.org/10.1364/OE.23.020203.

87. João, C.P., et al., A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping. Applied physics / B, 2015. 118(3): p. 401 - 407 DOI: 10.1007/s00340-015-6003-6. http://repository.gsi.de/record/180878

http://dx.doi.org/10.1007/s00340-015-6003-6.

88. Jordan, E., et al., High-Resolution Spectroscopy on the Laser-Cooling Candidate La$^−$. Physical review letters, 2015. 115(11): p. 113001 DOI: 10.1103/PhysRevLett.115.113001. http://repository.gsi.de/record/186879

http://dx.doi.org/10.1103/PhysRevLett.115.113001.

89. Jörg, H., et al., Linear polarization of x-ray transitions due to dielectronic recombination in highly charged ions. Physical review / A, 2015. 91(4): p. 042705 DOI: 10.1103/PhysRevA.91.042705. http://repository.gsi.de/record/186861

http://dx.doi.org/10.1103/PhysRevA.91.042705.

90. Karbstein, F., et al., Vacuum birefringence in strong inhomogeneous electromagnetic fields. Physical review / D, 2015. 92(7): p. 071301 DOI: 10.1103/PhysRevD.92.071301. http://repository.gsi.de/record/186862

http://dx.doi.org/10.1103/PhysRevD.92.071301.

91. Karbstein, F. and R. Shaisultanov, Stimulated photon emission from the vacuum. Physical review / D, 2015. 91(11): p. 113002 DOI: 10.1103/PhysRevD.91.113002. http://repository.gsi.de/record/186864

http://dx.doi.org/10.1103/PhysRevD.91.113002.

92. Karbstein, F. and R. Shaisultanov, Photon propagation in slowly varying inhomogeneous electromagnetic fields. Physical review / D, 2015. 91(8): p. 085027 DOI: 10.1103/PhysRevD.91.085027. http://repository.gsi.de/record/186863

http://dx.doi.org/10.1103/PhysRevD.91.085027.

93. Katayama, T., et al., Antiproton chain of the FAIR storage rings. Physica scripta, 2015. T166: p. 014073 DOI: 10.1088/0031-8949/2015/T166/014073. http://repository.gsi.de/record/181068

http://dx.doi.org/10.1088/0031-8949/2015/T166/014073.

94. Kern, C., M. Zürch, and C. Spielmann, Limitations of Extreme Nonlinear Ultrafast Nanophotonics. Nanophotonics, 2015. 4(1): p. 303–323 DOI: 10.1515/nanoph-2015-00013. http://repository.gsi.de/record/186865

http://dx.doi.org/10.1515/nanoph-2015-00013.

95. Kienel, M., et al., Multidimensional coherent pulse addition of ultrashort laser pulses. Optics letters, 2015. 40(4): p. Vol. 40, Issue 4, pp. 522-525 (2015) DOI: 10.1364/OL.40.000522. http://repository.gsi.de/record/186866

http://dx.doi.org/10.1364/OL.40.000522.

96. Köhler, F., et al., The electron mass from g -factor measurements on hydrogen-like carbon $^{12}C^{5+}$. Journal of physics / B, 2015. 48(14): p. 144032 DOI: 10.1088/0953-4075/48/14/144032. http://repository.gsi.de/record/109136

http://dx.doi.org/10.1088/0953-4075/48/14/144032.

97. Körner, J., et al., Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System. Applied Sciences, 2015. 5(4): p. 1790 - 1802 DOI: 10.3390/app5041790. http://repository.gsi.de/record/186895

http://dx.doi.org/10.3390/app5041790.

98. Kovalenko, O., et al., Investigation of the heavy-ion mode in the FAIR High Energy Storage Ring. Physica scripta, 2015. T166: p. 014042 DOI: 10.1088/0031-8949/2015/T166/014042. http://repository.gsi.de/record/183248

http://dx.doi.org/10.1088/0031-8949/2015/T166/014042.

99. Kovtun, O., et al., Strong effect of the electron spin on bremsstrahlung observed in the relativistic regime. Journal of physics / Conference Series, 2015. 635(5): p. 052089 DOI: 10.1088/1742-6596/635/5/052089. http://repository.gsi.de/record/184293

http://dx.doi.org/10.1088/1742-6596/635/5/052089.

100. Kovtun, O., et al., Spin-orbit interaction in bremsstrahlung and its effect on the electron motion in a strong Coulomb field. Physical review / A, 2015. 92(6): p. 062707 DOI: 10.1103/PhysRevA.92.062707. http://repository.gsi.de/record/184260

http://dx.doi.org/10.1103/PhysRevA.92.062707.

101. Kozhedub, Y.S., et al., Non-perturbative relativistic calculations of the K-shell-vacancy production in Xe-Xe$^{54+}$ collisions. Journal of physics / Conference Series, 2015. 599: p. 012037 DOI: 10.1088/1742-6596/599/1/012037. http://repository.gsi.de/record/109135

http://dx.doi.org/10.1088/1742-6596/599/1/012037.

102. Krasyuk, I.K., et al., Investigation of the spall strength of graphite using nano- and picosecond laser pulses, in ELBRUS 2015. 2015, IOP Publ.: Kabardino-Balkaria, Russia. p. 012002 DOI: 10.1088/1742-6596/653/1/012002. http://repository.gsi.de/record/184701

http://dx.doi.org/10.1088/1742-6596/653/1/012002.

103. Kraus, D., et al., The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering. Physics of plasmas, 2015. 22(5): p. 056307 DOI: 10.1063/1.4920943. http://repository.gsi.de/record/108763

http://dx.doi.org/10.1063/1.4920943.

104. Krauser, J., et al., Electrical conduction of ion tracks in tetrahedral amorphous carbon: temperature, field and doping dependence and comparison with matrix data. New journal of physics, 2015. 17(12): p. 123009 DOI: 10.1088/1367-2630/17/12/123009. http://repository.gsi.de/record/184683

http://dx.doi.org/10.1088/1367-2630/17/12/123009.

105. Krings, T., et al., Multi-element readout of structured HPGe-detectors for high-resolution x-ray spectroscopy using CUBE-preamplifiers. Journal of Instrumentation, 2015. 10(02): p. C02043 - C02043 DOI: 10.1088/1748-0221/10/02/C02043. http://repository.gsi.de/record/97425

http://dx.doi.org/10.1088/1748-0221/10/02/C02043.

106. Kuhn, S., et al., Effect of hydroxyl concentration on Yb$^{3+}$ luminescence properties in a peraluminous lithium-alumino-silicate glass. Optical materials express, 2015. 5(2): p. 430 - DOI: 10.1364/OME.5.000430. http://repository.gsi.de/record/186896

http://dx.doi.org/10.1364/OME.5.000430.

107. Kuhn, S., et al., Photo-acoustic spectroscopy and quantum efficiency of Yb$^{3+}$ doped alumino silicate glasses. Journal of applied physics, 2015. 118(10): p. 103104 DOI: 10.1063/1.4929819. http://repository.gsi.de/record/186897

http://dx.doi.org/10.1063/1.4929819.

108. Kumar, S., et al., Design of mechanically compensated Penning trap for the study of ions in extreme laser field. XXIX International Conference on Photonic, Electronic, and Atomic Collisions, 2015. 635(9): p. 092070 DOI: 10.1088/1742-6596/635/9/092070. http://repository.gsi.de/record/184421

http://dx.doi.org/10.1088/1742-6596/635/9/092070.

109. Kunitski, M., et al., Observation of the Efimov state of the helium trimer. Science, 2015. 348(6234): p. 551 - 555 DOI: 10.1126/science.aaa5601. http://repository.gsi.de/record/109134

http://dx.doi.org/10.1126/science.aaa5601.

110. Kupka, K., et al., Intense heavy ion beam-induced temperature effects in carbon-based stripper foils. Journal of radioanalytical and nuclear chemistry, 2015. 305(3): p. 875 - 882 DOI: 10.1007/s10967-015-4057-x. http://repository.gsi.de/record/180942

http://dx.doi.org/10.1007/s10967-015-4057-x.

111. Landgraf, B., et al., Generation of multi-millijoule red-shifted pulses for seeding stimulated Raman backscattering amplifiers. Optics express, 2015. 23(6): p. 7400 - DOI: 10.1364/OE.23.007400. http://repository.gsi.de/record/180880

http://dx.doi.org/10.1364/OE.23.007400.

112. Lang, M., et al., Advances in understanding of swift heavy-ion tracks in complex ceramics. Current opinion in solid state & materials science, 2015. 19(1): p. 39 - 48 DOI: 10.1016/j.cossms.2014.10.002. http://repository.gsi.de/record/180928

http://dx.doi.org/10.1016/j.cossms.2014.10.002.

113. Lang, M., et al., Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques. Journal of materials research, 2015. 30(09): p. 1366 - 1379 DOI: 10.1557/jmr.2015.6. http://repository.gsi.de/record/180931

http://dx.doi.org/10.1557/jmr.2015.6.

114. Lestinsky, M., et al., CRYRING@ESR: present status and future research. Physica scripta, 2015. T166: p. 014075 DOI: 10.1088/0031-8949/2015/T166/014075. http://repository.gsi.de/record/180986

http://dx.doi.org/10.1088/0031-8949/2015/T166/014075.

115. Liu, W., et al., Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses. Optics letters, 2015. 40(2): p. 151 - DOI: 10.1364/OL.40.000151. http://repository.gsi.de/record/186880

http://dx.doi.org/10.1364/OL.40.000151.

116. Loisch, G., et al., Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping. Physics of plasmas, 2015. 22(5): p. 053502 DOI: 10.1063/1.4919851. http://repository.gsi.de/record/108762

http://dx.doi.org/10.1063/1.4919851.

117. Maiorova, A.V., et al., Quantum correlations in the radiative recombination into excited state of highly charged heavy ions. Journal of physics / Conference Series, 2015. 635(9): p. 092075 DOI: 10.1088/1742-6596/635/9/092075. http://repository.gsi.de/record/184289

http://dx.doi.org/10.1088/1742-6596/635/9/092075.

118. Maltsev, I.A., et al., Electron-positron pair creation in low-energy collisions of heavy bare nuclei. Physical review / A, 2015. 91(3): p. 032708 DOI: 10.1103/PhysRevA.91.032708. http://repository.gsi.de/record/109133

http://dx.doi.org/10.1103/PhysRevA.91.032708.

119. Manschwetus, B., et al., Self-Probing Spectroscopy of the SF 6 Molecule: A Study of the Spectral Amplitude and Phase of the High Harmonic Emission. The @journal of physical chemistry <Washington, DC> / A, 2015. 119(23): p. 6111 - 6122 DOI: 10.1021/acs.jpca.5b00446. http://repository.gsi.de/record/186867

http://dx.doi.org/10.1021/acs.jpca.5b00446.

120. Marx-Glowna, B., et al., Influence of higher harmonics of the undulator in X-ray polarimetry and crystal monochromator design. Journal of synchrotron radiation, 2015. 22(5): p. 1151 - 1154 DOI: 10.1107/S1600577515011510. http://repository.gsi.de/record/186703

http://dx.doi.org/10.1107/S1600577515011510.

121. Matei, E., et al., Electrical properties of single CdTe nanowires. Beilstein journal of nanotechnology, 2015. 6: p. 444 - 450 DOI: 10.3762/bjnano.6.45. http://repository.gsi.de/record/180933

http://dx.doi.org/10.3762/bjnano.6.45.

122. Mejía, C., et al., Radiolysis and sputtering of carbon dioxide ice induced by swift Ti, Ni, and Xe ions. Nuclear instruments & methods in physics research / B, 2015. 365: p. 477 - 481 DOI: 10.1016/j.nimb.2015.09.039. http://repository.gsi.de/record/183620

http://dx.doi.org/10.1016/j.nimb.2015.09.039.

123. Mirfayzi, S.R., et al., Calibration of time of flight detectors using laser-driven neutron source. Review of scientific instruments, 2015. 86(7): p. 073308 DOI: 10.1063/1.4923088. http://repository.gsi.de/record/186917

http://dx.doi.org/10.1063/1.4923088.

124. Muench, F., et al., Self-Supporting Metal Nanotube Networks Obtained by Highly Conformal Electroless Plating. ChemPlusChem, 2015. 80(9): p. 1448 - 1456 DOI: 10.1002/cplu.201500073. http://repository.gsi.de/record/184685

http://dx.doi.org/10.1002/cplu.201500073.

125. Müller, R.A., et al., Effect of bound-state dressing in laser-assisted radiative recombination. Physical review / A, 2015. 92(5): p. 053426 DOI: 10.1103/PhysRevA.92.053426. http://repository.gsi.de/record/184259

http://dx.doi.org/10.1103/PhysRevA.92.053426.

126. Nguyen, Q.H., et al., Transport properties of track-etched membranes having variable effective pore-lengths. Nanotechnology, 2015. 26(48): p. 485502 DOI: 10.1088/0957-4484/26/48/485502. http://repository.gsi.de/record/184686

http://dx.doi.org/10.1088/0957-4484/26/48/485502.

127. Nörtershäuser, W. and R. Sánchez, Laser spectroscopy at storage rings. Physica scripta, 2015. T166: p. 014020 DOI: 10.1088/0031-8949/2015/T166/014020. http://repository.gsi.de/record/183262

http://dx.doi.org/10.1088/0031-8949/2015/T166/014020.

128. Ortner, A., et al., A novel double hohlraum target to create a moderately coupled plasma for ion stopping experiments. Nuclear instruments & methods in physics research / B, 2015. 343: p. 123 - 131 DOI: 10.1016/j.nimb.2014.11.047. http://repository.gsi.de/record/97471

http://dx.doi.org/10.1016/j.nimb.2014.11.047.

129. Ortner, A., et al., Role of charge transfer in heavy-ion-beam–plasma interactions at intermediate energies. Physical review / E, 2015. 91(2): p. 023104 DOI: 10.1103/PhysRevE.91.023104. http://repository.gsi.de/record/108764

http://dx.doi.org/10.1103/PhysRevE.91.023104.

130. Otto, A., et al., Lifting shell structures in the dynamically assisted Schwinger effect in periodic fields. Physics letters / B, 2015. 740: p. 335 - 340 DOI: 10.1016/j.physletb.2014.12.010. http://repository.gsi.de/record/186868

http://dx.doi.org/10.1016/j.physletb.2014.12.010.

131. Otto, A., et al., Dynamical Schwinger process in a bifrequent electric field of finite duration: Survey on amplification. Physical review / D, 2015. 91(10): p. 105018 DOI: 10.1103/PhysRevD.91.105018. http://repository.gsi.de/record/186869

http://dx.doi.org/10.1103/PhysRevD.91.105018.

132. Palomares, R.I., et al., In situ defect annealing of swift heavy ion irradiated CeO$_2$ and ThO$_2$ using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell. Journal of applied crystallography, 2015. 48(3): p. 711 - 717 DOI: 10.1107/S160057671500477X. http://repository.gsi.de/record/180932

http://dx.doi.org/10.1107/S160057671500477X.

133. Papaléo, R.M., et al., Confinement Effects of Ion Tracks in Ultrathin Polymer Films. Physical review letters, 2015. 114(11): p. 118302 DOI: 10.1103/PhysRevLett.114.118302. http://repository.gsi.de/record/180943

http://dx.doi.org/10.1103/PhysRevLett.114.118302.

134. Park, S., et al., Response of Gd$_2$Ti$_2$O$_7$ and La$_2$Ti$_2$O$_7$ to swift-heavy ion irradiation and annealing. Acta materialia, 2015. 93: p. 1 - 11 DOI: 10.1016/j.actamat.2015.04.010. http://repository.gsi.de/record/180940

http://dx.doi.org/10.1016/j.actamat.2015.04.010.

135. Pellemoine, F., et al., Study on structural recovery of graphite irradiated with swift heavy ions at high temperature. Nuclear instruments & methods in physics research / B, 2015. 365: p. 522 - 524 DOI: 10.1016/j.nimb.2015.09.007. http://repository.gsi.de/record/183623

http://dx.doi.org/10.1016/j.nimb.2015.09.007.

136. Pérez-Mitta, G., et al., Host–guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes. Nanoscale, 2015. 7(38): p. 15594 - 15598 DOI: 10.1039/C5NR04645A. http://repository.gsi.de/record/184677

http://dx.doi.org/10.1039/C5NR04645A.

137. Pérez-Mitta, G., et al., Nanofluidic Diodes with Dynamic Rectification Properties Stemming from Reversible Electrochemical Conversions in Conducting Polymers. Journal of the American Chemical Society, 2015. 137(49): p. 15382 - 15385 DOI: 10.1021/jacs.5b10692. http://repository.gsi.de/record/184679

http://dx.doi.org/10.1021/jacs.5b10692.

138. Pérez-Mitta, G., et al., Polydopamine Meets Solid-State Nanopores: A Bioinspired Integrative Surface Chemistry Approach To Tailor the Functional Properties of Nanofluidic Diodes. Journal of the American Chemical Society, 2015. 137(18): p. 6011 - 6017 DOI: 10.1021/jacs.5b01638. http://repository.gsi.de/record/180936

http://dx.doi.org/10.1021/jacs.5b01638.

139. Peshkov, A.A., S. Fritzsche, and A. Surzhykov, Ionization of the hydrogen molecular ion H$_2^+$ by twisted light. Journal of physics / Conference Series, 2015. 635(11): p. 112021 DOI: 10.1088/1742-6596/635/11/112021. http://repository.gsi.de/record/184286

http://dx.doi.org/10.1088/1742-6596/635/11/112021.

140. Peshkov, A.A., S. Fritzsche, and A. Surzhykov, Ionization of H$^+_2$ molecular ions by twisted Bessel light. Physical review / A, 2015. 92(4): p. 043415 DOI: 10.1103/PhysRevA.92.043415. http://repository.gsi.de/record/161451

http://dx.doi.org/10.1103/PhysRevA.92.043415.

141. Petridis, N., et al., Prototype internal target design for storage ring experiments. Physica scripta, 2015. T166: p. 014051 DOI: 10.1088/0031-8949/2015/T166/014051. http://repository.gsi.de/record/183591

http://dx.doi.org/10.1088/0031-8949/2015/T166/014051.

142. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration. Physical review / E, 2015. 91(3): p. 033007 DOI: 10.1103/PhysRevE.91.033007. http://repository.gsi.de/record/180873

http://dx.doi.org/10.1103/PhysRevE.91.033007.

143. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Analytic model for the dynamic Z-pinch. Physics of plasmas, 2015. 22(6): p. 062704 DOI: 10.1063/1.4922078. http://repository.gsi.de/record/180872

http://dx.doi.org/10.1063/1.4922078.

144. Qiu, Y., et al., Pores with Longitudinal Irregularities Distinguish Objects by Shape. ACS nano, 2015. 9(4): p. 4390 - 4397 DOI: 10.1021/acsnano.5b00877. http://repository.gsi.de/record/180935

http://dx.doi.org/10.1021/acsnano.5b00877.

145. Ramirez, P., et al., Energy conversion from external fluctuating signals based on asymmetric nanopores. Nano energy, 2015. 16: p. 375 - 382 DOI: 10.1016/j.nanoen.2015.07.013. http://repository.gsi.de/record/161260

http://dx.doi.org/10.1016/j.nanoen.2015.07.013.

146. Ringleb, S., et al., HILITE—ions in intense photon fields. Physica scripta, 2015. T166: p. 014067 DOI: 10.1088/0031-8949/2015/T166/014067. http://repository.gsi.de/record/183240

http://dx.doi.org/10.1088/0031-8949/2015/T166/014067.

147. Rosmej, O., et al., The hydrodynamic and radiative properties of low-density foams heated by x-rays. Plasma physics and controlled fusion, 2015. 57(9): p. 094001 DOI: 10.1088/0741-3335/57/9/094001. http://repository.gsi.de/record/180954

http://dx.doi.org/10.1088/0741-3335/57/9/094001.

148. Rothard, H., D. Severin, and C. Trautmann, [Editorial] Swift Heavy Ions in Matter. Nuclear instruments & methods in physics research / B, 2015. 365: p. 435 - 436 DOI: 10.1016/j.nimb.2015.11.013. http://repository.gsi.de/record/184673

http://dx.doi.org/10.1016/j.nimb.2015.11.013.

149. Rothhardt, J., et al., Prospects for laser spectroscopy of highly charged ions with high-harmonic XUV and soft x-ray sources. Physica scripta, 2015. T166: p. 014030 DOI: 10.1088/0031-8949/2015/T166/014030. http://repository.gsi.de/record/183590

http://dx.doi.org/10.1088/0031-8949/2015/T166/014030.

150. Rusby, D.R., et al., Measurement of the angle, temperature and flux of fast electrons emitted from intense laser–solid interactions. Journal of plasma physics, 2015. 81(05): p. 475810505 DOI: 10.1017/S0022377815000835. http://repository.gsi.de/record/180874

http://dx.doi.org/10.1017/S0022377815000835.

151. Sánchez, R., et al., Hyperfine transition in $^{209}$Bi$^{80+}$ — one step forward. Physica scripta, 2015. T166: p. 014021 DOI: 10.1088/0031-8949/2015/T166/014021. http://repository.gsi.de/record/183245

http://dx.doi.org/10.1088/0031-8949/2015/T166/014021.

152. Sanjari, M.S., et al., Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings. Physica scripta, 2015. T166: p. 014060 DOI: 10.1088/0031-8949/2015/T166/014060. http://repository.gsi.de/record/183261

http://dx.doi.org/10.1088/0031-8949/2015/T166/014060.

153. Sarri, G., et al., Overview of laser-driven generation of electron–positron beams. Journal of plasma physics, 2015. 81(04): p. 455810401 DOI: 10.1017/S002237781500046X. http://repository.gsi.de/record/186870

http://dx.doi.org/10.1017/S002237781500046X.

154. Sävert, A., et al., Direct Observation of the Injection Dynamics of a Laser Wakefield Accelerator Using Few-Femtosecond Shadowgraphy. Physical review letters, 2015. 115(5): p. 055002 DOI: 10.1103/PhysRevLett.115.055002. http://repository.gsi.de/record/186907

http://dx.doi.org/10.1103/PhysRevLett.115.055002.

155. Sayler, A.M., et al., Accurate determination of absolute carrier-envelope phase dependence using photo-ionization. Optics letters, 2015. 40(13): p. 3137 - DOI: 10.1364/OL.40.003137. http://repository.gsi.de/record/186908

http://dx.doi.org/10.1364/OL.40.003137.

156. Schauries, D., et al., Ion track annealing in quartz investigated by small angle X-ray scattering, in 19th International Conference on Ion Beam Modification of Materials. 2015, Elsevier: Leuven, Belgium. p. 380 - 383 DOI: 10.1016/j.nimb.2015.07.081. http://repository.gsi.de/record/183612

http://dx.doi.org/10.1016/j.nimb.2015.07.081.

157. Schauries, D., et al., Orientation dependent annealing kinetics of ion tracks in c-SiO$_2$. Journal of applied physics, 2015. 118(22): p. 224305 DOI: 10.1063/1.4936601. http://repository.gsi.de/record/184681

http://dx.doi.org/10.1063/1.4936601.

158. Schauries, D., et al., Size characterization of ion tracks in PET and PTFE using SAXS. Nuclear instruments & methods in physics research / B, 2015. 365: p. 573 - 577 DOI: 10.1016/j.nimb.2015.08.071. http://repository.gsi.de/record/183622

http://dx.doi.org/10.1016/j.nimb.2015.08.071.

159. Schippers, S., et al., Stepwise contraction of the n f Rydberg shells in the 3d photoionization of multiply-charged xenon ions. Journal of physics / B, 2015. 48(14): p. 144003 - DOI: 10.1088/0953-4075/48/14/144003. http://repository.gsi.de/record/186881

http://dx.doi.org/10.1088/0953-4075/48/14/144003.

160. Schippers, S., A. Surzhykov, and S. Fritzsche, 9th International Conference on Atomic and Molecular Data and Their Applications. Physica scripta, 2015. 90(5): p. 050201 DOI: 10.1088/0031-8949/90/5/050201. http://repository.gsi.de/record/186882

http://dx.doi.org/10.1088/0031-8949/90/5/050201.

161. Schlüter, A., et al., Phase field modelling of dynamic thermal fracture in the context of irradiation damage. Continuum mechanics and thermodynamics, 2015. 1: p. 1-12 DOI: 10.1007/s00161-015-0456-z. http://repository.gsi.de/record/184699

http://dx.doi.org/10.1007/s00161-015-0456-z.

162. Schmidt, P., O. Boine-Frankenheim, and P. Mulser, Laser induced focusing for over-dense plasma beams. Physics of plasmas, 2015. 22(9): p. 093120 - DOI: 10.1063/1.4931739. http://repository.gsi.de/record/184640

http://dx.doi.org/10.1063/1.4931739

<Go to ISI>://WOS:000362571800109.

163. Schmidt, S., et al., Non-destructive single-pass low-noise detection of ions in a beamline. Review of scientific instruments, 2015. 86(11): p. 113302 DOI: 10.1063/1.4935551. http://repository.gsi.de/record/184419

http://dx.doi.org/10.1063/1.4935551.

164. Schnell, M., et al., Characterization and application of hard x-ray betatron radiation generated by relativistic electrons from a laser-wakefield accelerator. Journal of plasma physics, 2015. 81(04): p. 475810401 DOI: 10.1017/S0022377815000379. http://repository.gsi.de/record/186909

http://dx.doi.org/10.1017/S0022377815000379.

165. Schubert, I., et al., Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes. Beilstein journal of nanotechnology, 2015. 6: p. 1272 - 1280 DOI: 10.3762/bjnano.6.131. http://repository.gsi.de/record/180937

http://dx.doi.org/10.3762/bjnano.6.131.

166. Schubert, I., et al., STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers. Nanoscale, 2015. 7(11): p. 4935 - 4941 DOI: 10.1039/C4NR06578F. http://repository.gsi.de/record/180941

http://dx.doi.org/10.1039/C4NR06578F.

167. Scott, G.G., et al., Optimization of plasma mirror reflectivity and optical quality using double laser pulses. New journal of physics, 2015. 17(3): p. 033027 DOI: 10.1088/1367-2630/17/3/033027. http://repository.gsi.de/record/180879

http://dx.doi.org/10.1088/1367-2630/17/3/033027.

168. Seipt, D., et al., Narrowband inverse Compton scattering x-ray sources at high laser intensities. Physical review / A, 2015. 91(3): p. 033402 DOI: 10.1103/PhysRevA.91.033402. http://repository.gsi.de/record/97792

http://dx.doi.org/10.1103/PhysRevA.91.033402.

169. Serbo, V., et al., Scattering of twisted relativistic electrons by atoms. Physical review / A, 2015. 92(1): p. 012705 DOI: 10.1103/PhysRevA.92.012705. http://repository.gsi.de/record/186871

http://dx.doi.org/10.1103/PhysRevA.92.012705.

170. Shah, C., et al., Complete measurements of anisotropic x-ray emission following recombination of highly charged ions. Journal of physics / Conference Series, 2015. 635(5): p. 052093 DOI: 10.1088/1742-6596/635/5/052093. http://repository.gsi.de/record/184285

http://dx.doi.org/10.1088/1742-6596/635/5/052093.

171. Shah, C., et al., Polarization measurement of dielectronic recombination transitions in highly charged krypton ions. Physical review / A, 2015. 92(4): p. 042702 DOI: 10.1103/PhysRevA.92.042702. http://repository.gsi.de/record/161374

http://dx.doi.org/10.1103/PhysRevA.92.042702.

172. Shah, C., et al., Linear polarization of x rays due to dielectronic recombination into highly charged ions. Journal of physics / Conference Series, 2015. 635(5): p. 052091 DOI: 10.1088/1742-6596/635/5/052091. http://repository.gsi.de/record/184290

http://dx.doi.org/10.1088/1742-6596/635/5/052091.

173. Shamir, Y., et al., High-average-power 2  μm few-cycle optical parametric chirped pulse amplifier at 100  kHz repetition rate. Optics letters, 2015. 40(23): p. 5546 DOI: 10.1364/OL.40.005546. http://repository.gsi.de/record/186910

http://dx.doi.org/10.1364/OL.40.005546.

174. Smorra, C., et al., A reservoir trap for antiprotons. International journal of mass spectrometry, 2015. 389: p. 10 - 13 DOI: 10.1016/j.ijms.2015.08.007. http://repository.gsi.de/record/201148

http://dx.doi.org/10.1016/j.ijms.2015.08.007.

175. Sobel, N., et al., Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition. Beilstein journal of nanotechnology, 2015. 6: p. 472 - 479 DOI: 10.3762/bjnano.6.48. http://repository.gsi.de/record/180934

http://dx.doi.org/10.3762/bjnano.6.48.

176. Spende, A., et al., TiO$_2$, SiO$_2$, and Al$_2$O$_3$ coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements. Nanotechnology, 2015. 26(33): p. 335301 DOI: 10.1088/0957-4484/26/33/335301. http://repository.gsi.de/record/161261

http://dx.doi.org/10.1088/0957-4484/26/33/335301.

177. Stiebing, K.E., et al., A lepton spectrometer for studies of fundamental atomic processes at HESR at FAIR. Journal of physics / Conference Series, 2015. 635(2): p. 022087 DOI: 10.1088/1742-6596/635/2/022087. http://repository.gsi.de/record/184283

http://dx.doi.org/10.1088/1742-6596/635/2/022087.

178. Stock, S., et al., Compton scattering of twisted light: Angular distribution and polarization of scattered photons. Physical review / A, 2015. 92(1): p. 013401 DOI: 10.1103/PhysRevA.92.013401. http://repository.gsi.de/record/186872

http://dx.doi.org/10.1103/PhysRevA.92.013401.

179. Stöhlker, T., et al., APPA at FAIR: From fundamental to applied research. Nuclear instruments & methods in physics research / B, 2015. 365(Part B): p. S0168583X15006552 DOI: 10.1016/j.nimb.2015.07.077. http://repository.gsi.de/record/180877

http://dx.doi.org/10.1016/j.nimb.2015.07.077.

180. Stöhlker, T. and Y.A. Litvinov, Atomic physics experiments at the high energy storage ring. Physica scripta, 2015. T166: p. 014025 DOI: 10.1088/0031-8949/2015/T166/014025. http://repository.gsi.de/record/181060

http://dx.doi.org/10.1088/0031-8949/2015/T166/014025.

181. Stutzki, F., et al., Tm-based fiber-laser system with more than 200  MW peak power. Optics letters, 2015. 40(1): p. 9 - DOI: 10.1364/OL.40.000009. http://repository.gsi.de/record/186873

http://dx.doi.org/10.1364/OL.40.000009.

182. Sun, B.H., et al., Toward precision mass measurements of neutron-rich nuclei relevant to r-process nucleosynthesis. Frontiers of physics, 2015. 10(4): p. 1 - 25 DOI: 10.1007/s11467-015-0503-z. http://repository.gsi.de/record/161307

http://dx.doi.org/10.1007/s11467-015-0503-z.

183. Surzhykov, A., et al., Interaction of twisted light with many-electron atoms and ions. Physical review / A, 2015. 91(1): p. 013403 DOI: 10.1103/PhysRevA.91.013403. http://repository.gsi.de/record/97304

http://dx.doi.org/10.1103/PhysRevA.91.013403.

184. Surzhykov, A., et al., Rayleigh scattering of x–rays by many–electron ions. Journal of physics / Conference Series, 2015. 635(9): p. 092016 DOI: 10.1088/1742-6596/635/9/092016. http://repository.gsi.de/record/184294

http://dx.doi.org/10.1088/1742-6596/635/9/092016.

185. Surzhykov, A., et al., Corrigendum: Rayleigh x-ray scattering from many-electron atoms and ions. Journal of physics / B, 2015. 4(18): p. 189501 DOI: 10.1088/0953-4075/48/18/189501. http://repository.gsi.de/record/183588

http://dx.doi.org/10.1088/0953-4075/48/18/189501.

186. Surzhykov, A., et al., Rayleigh x-ray scattering from many-electron atoms and ions. Journal of physics / B, 2015. 48(14): p. 144015 DOI: 10.1088/0953-4075/48/14/144015. http://repository.gsi.de/record/109129

http://dx.doi.org/10.1088/0953-4075/48/14/144015.

187. Tashenov, S., et al., Coherent population of magnetic sublevels of 2p$_{3/2}$ state in hydrogenlike uranium by radiative recombination. Physica scripta, 2015. T166: p. 014027 DOI: 10.1088/0031-8949/2015/T166/014027. http://repository.gsi.de/record/181063

http://dx.doi.org/10.1088/0031-8949/2015/T166/014027.

188. Tashenov, S., et al., First observation of coherence in a highly charged ion. Journal of physics / Conference Series, 2015. 635(2): p. 022096 DOI: 10.1088/1742-6596/635/2/022096. http://repository.gsi.de/record/184274

http://dx.doi.org/10.1088/1742-6596/635/2/022096.

189. Thomaz, R., et al., Oxygen loss induced by swift heavy ions of low and high dE/dx in PMMA thin films. Nuclear instruments & methods in physics research / B, 2015. 365: p. 578 - 582 DOI: 10.1016/j.nimb.2015.09.019. http://repository.gsi.de/record/183625

http://dx.doi.org/10.1016/j.nimb.2015.09.019.

190. Tracy, C.L., et al., Redox response of actinide materials to highly ionizing radiation. Nature Communications, 2015. 6: p. 6133 - DOI: 10.1038/ncomms7133. http://repository.gsi.de/record/180927

http://dx.doi.org/10.1038/ncomms7133.

191. Tracy, C.L., et al., Phase transformations in Ln$_2$O$_3$ materials irradiated with swift heavy ions. Physical review / B, 2015. 92(17): p. 174101 DOI: 10.1103/PhysRevB.92.174101. http://repository.gsi.de/record/184684

http://dx.doi.org/10.1103/PhysRevB.92.174101.

192. Trageser, C., et al., A continuous, broadband data acquisition for Schottky signals in atomic and nuclear physics experiments at heavy-ion storage rings. Journal of physics / Conference Series, 2015. 635(2): p. 022085 DOI: 10.1088/1742-6596/635/2/022085. http://repository.gsi.de/record/184284

http://dx.doi.org/10.1088/1742-6596/635/2/022085.

193. Trageser, C., et al., A new data acquisition system for Schottky signals in atomic physics experiments at GSI's and FAIR's storage rings. Physica scripta, 2015. T166: p. 014062 DOI: 10.1088/0031-8949/2015/T166/014062. http://repository.gsi.de/record/183253

http://dx.doi.org/10.1088/0031-8949/2015/T166/014062.

194. Trotsenko, S., et al., Experimental study of the dielectronic recombination into Li-like uranium. Physica scripta, 2015. T166: p. 014024 DOI: 10.1088/0031-8949/2015/T166/014024. http://repository.gsi.de/record/183246

http://dx.doi.org/10.1088/0031-8949/2015/T166/014024.

195. Tu, X.L., et al., Study of projectile fragmentation reaction with isochronous mass spectrometry. Physica scripta, 2015. T166: p. 014009 DOI: 10.1088/0031-8949/2015/T166/014009. http://repository.gsi.de/record/181070

http://dx.doi.org/10.1088/0031-8949/2015/T166/014009.

196. Ullmann, J., et al., An improved value for the hyperfine splitting of hydrogen-like $^{209}$Bi$^{82+}$. Journal of physics / B, 2015. 48(14): p. 144022 DOI: 10.1088/0953-4075/48/14/144022. http://repository.gsi.de/record/183584

http://dx.doi.org/10.1088/0953-4075/48/14/144022.

197. Ulmer, S., et al., High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature <London>, 2015. 524(7564): p. 196 - 199 DOI: 10.1038/nature14861. http://repository.gsi.de/record/201147

http://dx.doi.org/10.1038/nature14861.

198. Vogel, M., et al., Penning-trap experiments for spectroscopy of highly-charged ions at HITRAP. Physica scripta, 2015. T166: p. 014066 DOI: 10.1088/0031-8949/2015/T166/014066. http://repository.gsi.de/record/183268

http://dx.doi.org/10.1088/0031-8949/2015/T166/014066.

199. Vogel, M., et al., Extreme-field physics in Penning traps, in 6th International Conference on Trapped Charged Particles and Fundamental. 2015, Springer Science + Business Media B.V: Takamatsu, Japan. p. 65 - 71 DOI: 10.1007/s10751-015-1173-5. http://repository.gsi.de/record/184433

http://dx.doi.org/10.1007/s10751-015-1173-5.

200. Vollbrecht, J., et al., Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth. Journal of physics / Conference Series, 2015. 583: p. 012002 - DOI: 10.1088/1742-6596/583/1/012002. http://repository.gsi.de/record/96940

http://dx.doi.org/10.1088/1742-6596/583/1/012002.

201. Wagner, F., et al., Simultaneous observation of angularly separated laser-driven proton beams accelerated via two different mechanisms. Physics of plasmas, 2015. 22(6): p. 063110 DOI: 10.1063/1.4922661. http://repository.gsi.de/record/180867

http://dx.doi.org/10.1063/1.4922661.

202. Wang, H.Y., et al., Gamma-ray emission in near critical density plasmas at laser intensities of 10$^{21}$ W/cm$^{2}$. Physics of plasmas, 2015. 22(3): p. 033102 DOI: 10.1063/1.4913991. http://repository.gsi.de/record/186883

http://dx.doi.org/10.1063/1.4913991.

203. Wang, H.Y., X.Q. Yan, and M. Zepf, High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse. Physical review / Special topics / Accelerators and beams, 2015. 18(2): p. 021302 DOI: 10.1103/PhysRevSTAB.18.021302. http://repository.gsi.de/record/186885

http://dx.doi.org/10.1103/PhysRevSTAB.18.021302.

204. Wang, H.Y., X.Q. Yan, and M. Zepf, Signatures of quantum radiation reaction in laser-electron-beam collisions. Physics of plasmas, 2015. 22(9): p. 093103 DOI: 10.1063/1.4929851. http://repository.gsi.de/record/186884

http://dx.doi.org/10.1063/1.4929851.

205. Weber, G., et al., Compton polarimetry using double-sided segmented x-ray detectors. Journal of physics / Conference Series, 2015. 583: p. 012041 - DOI: 10.1088/1742-6596/583/1/012041. http://repository.gsi.de/record/96939

http://dx.doi.org/10.1088/1742-6596/583/1/012041.

206. Weber, G., et al., Combined linear polarization and angular distribution measurements of x-rays for precise determination of multipole-mixing in characteristic transitions of high- Z systems. Journal of physics / B, 2015. 48(14): p. 144031 DOI: 10.1088/0953-4075/48/14/144031. http://repository.gsi.de/record/183619

http://dx.doi.org/10.1088/0953-4075/48/14/144031.

207. Weber, G., et al., Towards a fast calculator for the radiation characteristics of radiative recombination and radiative electron capture. FAIRNESS 2014, 2015. 599: p. 012040 DOI: 10.1088/1742-6596/599/1/012040. http://repository.gsi.de/record/108783

http://dx.doi.org/10.1088/1742-6596/599/1/012040.

208. Weber, G., et al., Total projectile electron loss cross sections of U$^{28+}$ ions in collisions with gaseous targets ranging from hydrogen to krypton. Physical review / Special topics / Accelerators and beams, 2015. 18(3): p. 034403 DOI: 10.1103/PhysRevSTAB.18.034403. http://repository.gsi.de/record/97799

http://dx.doi.org/10.1103/PhysRevSTAB.18.034403.

209. Willingale, L., et al., Characterization of laser-driven proton beams from near-critical density targets using copper activation. Journal of plasma physics, 2015. 81(01): p. 365810102 DOI: 10.1017/S002237781400066X. http://repository.gsi.de/record/186911

http://dx.doi.org/10.1017/S002237781400066X.

210. Winters, D., et al., Laser cooling of relativistic heavy-ion beams for FAIR. Physica scripta, 2015. T166: p. 014048 DOI: 10.1088/0031-8949/2015/T166/014048. http://repository.gsi.de/record/181061

http://dx.doi.org/10.1088/0031-8949/2015/T166/014048.

211. Woods, P., et al., Nuclear astrophysics experiments at storage rings: midterm perspectives at GSI. Physica scripta, 2015. T166: p. 014002 DOI: 10.1088/0031-8949/2015/T166/014002. http://repository.gsi.de/record/183252

http://dx.doi.org/10.1088/0031-8949/2015/T166/014002.

212. Wu, Z., et al., Dielectronic recombination rate coefficients of initially rubidium-like tungsten. The @European physical journal / D, 2015. 69(5): p. 140 DOI: 10.1140/epjd/e2015-50634-6. http://repository.gsi.de/record/186888

http://dx.doi.org/10.1140/epjd/e2015-50634-6.

213. Wu, Z.W., S. Fritzsche, and A. Surzhykov, Nuclear magnetic dipole moment effect on the angular distribution of the Kα lines. Physica scripta, 2015. T166: p. 014029 DOI: 10.1088/0031-8949/2015/T166/014029. http://repository.gsi.de/record/181066

http://dx.doi.org/10.1088/0031-8949/2015/T166/014029.

214. Wu, Z.W., A. Surzhykov, and S. Fritzsche, Reply to ''Comment on ‘Hyperfine-induced modifications to the angular distribution of the $K_{α1}$ x-ray emission’  ''. Physical review / A, 2015. 91(5): p. 056502 DOI: 10.1103/PhysRevA.91.056502. http://repository.gsi.de/record/109150

http://dx.doi.org/10.1103/PhysRevA.91.056502.

215. Wu, Z.W., et al., Linear polarization of x-rays emitted in the decay of highly-charged ions via overlapping resonances. Journal of physics / Conference Series, 2015. 635(1): p. 012020 DOI: 10.1088/1742-6596/635/1/012020. http://repository.gsi.de/record/184287

http://dx.doi.org/10.1088/1742-6596/635/1/012020.

216. Wustelt, P., et al., Momentum-resolved study of the saturation intensity in multiple ionization. Physical review / A, 2015. 91(3): p. 031401 DOI: 10.1103/PhysRevA.91.031401. http://repository.gsi.de/record/97790

http://dx.doi.org/10.1103/PhysRevA.91.031401.

217. Wut, Z.W., et al., Can angle-resolved x-ray measurements help determine small level splittings in highly charged ions? Journal of physics / Conference Series, 2015. 635(9): p. 092030 DOI: 10.1088/1742-6596/635/9/092030. http://repository.gsi.de/record/184288

http://dx.doi.org/10.1088/1742-6596/635/9/092030.

218. Xing, Y.M., et al., First isochronous mass measurements with two time-of-flight detectors at CSRe. Physica scripta, 2015. T166: p. 014010 DOI: 10.1088/0031-8949/2015/T166/014010. http://repository.gsi.de/record/183241

http://dx.doi.org/10.1088/0031-8949/2015/T166/014010.

219. Xu, G., et al., New model of calculating the energy transfer efficiency for the spherical theta-pinch device. Physics of plasmas, 2015. 22(5): p. 052703 DOI: 10.1063/1.4919938. http://repository.gsi.de/record/180955

http://dx.doi.org/10.1063/1.4919938.

220. Xu, X., et al., A data analysis method for isochronous mass spectrometry using two time-of-flight detectors at CSRe. Chinese physics / C, 2015. 39(10): p. 106201 DOI: 10.1088/1674-1137/39/10/106201. http://repository.gsi.de/record/184702

http://dx.doi.org/10.1088/1674-1137/39/10/106201.

221. Xu, X., et al., Direct mass measurements of neutron-rich $^{86}$Kr projectile fragments and the persistence of neutron magic number N =32 in Sc isotopes. Chinese physics / C, 2015. 39(10): p. 104001 DOI: 10.1088/1674-1137/39/10/104001. http://repository.gsi.de/record/185633

http://dx.doi.org/10.1088/1674-1137/39/10/104001.

222. Yablinsky, C.A., et al., Characterization of swift heavy ion irradiation damage in ceria. Journal of materials research, 2015. 30(9): p. 1473 - 1484 DOI: 10.1557/jmr.2015.43. http://repository.gsi.de/record/180930

http://dx.doi.org/10.1557/jmr.2015.43.

223. Yahia, V., et al., Reduction of stimulated Brillouin backscattering with plasma beam smoothing. Physics of plasmas, 2015. 22(4): p. 042707 DOI: 10.1063/1.4918942. http://repository.gsi.de/record/180920

http://dx.doi.org/10.1063/1.4918942.

224. Yan, X., et al., Investigation of the momentum compaction factor of the ESR thorough Schottky mass measurements. Physica scripta, 2015. T166: p. 014045 DOI: 10.1088/0031-8949/2015/T166/014045. http://repository.gsi.de/record/183265

http://dx.doi.org/10.1088/0031-8949/2015/T166/014045.

225. Yerokhin, V.A., et al., Target effects in negative-continuum-assisted dielectronic recombination. Physical review / A, 2015. 92(4): p. 042708 DOI: 10.1103/PhysRevA.92.042708. http://repository.gsi.de/record/180859

http://dx.doi.org/10.1103/PhysRevA.92.042708.

226. Yerokhin, V.A., A. Surzhykov, and S. Fritzsche, Relativistic configuration-interaction calculation of K α transition energies in beryllium-like argon. Physica scripta, 2015. 90(5): p. 054003 DOI: 10.1088/0031-8949/90/5/054003. http://repository.gsi.de/record/186874

http://dx.doi.org/10.1088/0031-8949/90/5/054003.

227. Yeung, M., et al., Noncollinear Polarization Gating of Attosecond Pulse Trains in the Relativistic Regime. Physical review letters, 2015. 115(19): p. 193903 DOI: 10.1103/PhysRevLett.115.193903. http://repository.gsi.de/record/186875

http://dx.doi.org/10.1103/PhysRevLett.115.193903.

228. Zabels, R., et al., Depth profiles of indentation hardness and dislocation mobility in MgO single crystals irradiated with swift $^{84}$Kr and $^{14}$N ions. Applied physics / A, 2015. 120(1): p. 167-173 DOI: 10.1007/s00339-015-9145-9. http://repository.gsi.de/record/161262

http://dx.doi.org/10.1007/s00339-015-9145-9.

229. Zastrau, U., et al., Ultrafast electron kinetics in short pulse laser-driven dense hydrogen. Journal of physics / B, 2015. 48(22): p. 224004 DOI: 10.1088/0953-4075/48/22/224004. http://repository.gsi.de/record/186876

http://dx.doi.org/10.1088/0953-4075/48/22/224004.

230. Zaytsev, V.A., et al., Parity nonconservation effect in the resonance elastic electron scattering on heavy He-like ions. Journal of physics / B, 2015. 48(16): p. 165003 DOI: 10.1088/0953-4075/48/16/165003. http://repository.gsi.de/record/109126

http://dx.doi.org/10.1088/0953-4075/48/16/165003.

231. Zürch, M. and C. Spielmann, Extreme ultraviolet digital in-line holography using a tabletop source. Applied optics, 2015. 54(19): p. 5992 - DOI: 10.1364/AO.54.005992. http://repository.gsi.de/record/186877

http://dx.doi.org/10.1364/AO.54.005992.

 

2016

1. Acharya, B., C. Ji, and L. Platter, Effective-field-theory analysis of Efimov physics in heteronuclear mixtures of ultracold atomic gases. Physical review / A, 2016. 94(3): p. 032702 DOI: 10.1103/PhysRevA.94.032702. http://repository.gsi.de/record/201131

http://dx.doi.org/10.1103/PhysRevA.94.032702.

2. Alejo, A., et al., High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams. Review of scientific instruments, 2016. 87(8): p. 083304 DOI: 10.1063/1.4961028. http://repository.gsi.de/record/201090

http://dx.doi.org/10.1063/1.4961028.

3. Alencar, I., et al., Irradiation effects in CaF$_2$ probed by Raman scattering. Journal of Raman spectroscopy, 2016. 47(8): p. 978 - 983 DOI: 10.1002/jrs.4927. http://repository.gsi.de/record/200457

http://dx.doi.org/10.1002/jrs.4927.

4. Alexeev, V., et al., Charge spectrum of heavy and superheavy componets of galactic cosmic rays: results of the OLIMPIYA experiment. The @astrophysical journal / 1, 2016. 829(2): p. 120 - DOI: 10.3847/0004-637X/829/2/120. http://repository.gsi.de/record/195717

http://dx.doi.org/10.3847/0004-637X/829/2/120.

5. Ali, M., et al., Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores. Small, 2016. 12(15): p. 2014 - 2021 DOI: 10.1002/smll.201600160. http://repository.gsi.de/record/187040

http://dx.doi.org/10.1002/smll.201600160.

6. Ali, M., S. Nasir, and W. Ensinger, Stereoselective detection of amino acids with protein-modified single asymmetric nanopores. Electrochimica acta, 2016. 215: p. 231 - 237 DOI: 10.1016/j.electacta.2016.08.067. http://repository.gsi.de/record/200460

http://dx.doi.org/10.1016/j.electacta.2016.08.067.

7. Apel, P.Y., et al., Shedding light on the mechanism of asymmetric track etching: an interplay between latent track structure, etchant diffusion and osmotic flow. Physical chemistry, chemical physics, 2016. 18(36): p. 25421 - 25433 DOI: 10.1039/C6CP05465J. http://repository.gsi.de/record/194930

http://dx.doi.org/10.1039/C6CP05465J.

8. Asavei, et al., Materials in extreme environments for energy, accelerators and space applications at ELI-NP. Romanian reports in physics, 2016. 68: p. S275-S347. http://repository.gsi.de/record/200466.

9. Babcock, C., et al., Quadrupole moments of odd-A $^{53−63}$Mn: Onset of collectivity towards N = 40. Physics letters / B, 2016. 760: p. 387 - 392 DOI: 10.1016/j.physletb.2016.07.016. http://repository.gsi.de/record/201125

http://dx.doi.org/10.1016/j.physletb.2016.07.016.

10. Bagnoud, V. and F. Wagner, Ultrahigh temporal contrast performance of the PHELIX petawatt facility. High power laser science and engineering, 2016. 4: p. e39 DOI: 10.1017/hpl.2016.38. http://repository.gsi.de/record/196331

http://dx.doi.org/10.1017/hpl.2016.38.

11. Bergmann, B., et al., Angular correlation function of the hypersatellite-satellite x-ray cascade following K -shell electron capture of $^{55}$Fe. Physical review / C, 2016. 94(1): p. 014611 DOI: 10.1103/PhysRevC.94.014611. http://repository.gsi.de/record/200937

http://dx.doi.org/10.1103/PhysRevC.94.014611.

12. Bernhardt, D., et al., Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions. Journal of physics / B, 2016. 49(7): p. 074004 DOI: 10.1088/0953-4075/49/7/074004. http://repository.gsi.de/record/186269

http://dx.doi.org/10.1088/0953-4075/49/7/074004.

13. Bernhardt, D., et al., Erratum: Electron-ion collision spectroscopy: Lithium-like xenon ions [Phys. Rev. A 91, 012710 (2015)]. Physical review / A covering atomic, molecular, and optical physics and quantum information, 2016. 94(2): p. 029903 DOI: 10.1103/PhysRevA.94.029903. http://repository.gsi.de/record/201216

http://dx.doi.org/10.1103/PhysRevA.94.029903.

14. Bernhardt, H., et al., High purity x-ray polarimetry with single-crystal diamonds. Applied physics letters, 2016. 109(12): p. 121106 DOI: 10.1063/1.4962806. http://repository.gsi.de/record/200912

http://dx.doi.org/10.1063/1.4962806.

15. Bissell, M.L., et al., Cu charge radii reveal a weak sub-shell effect at N = 40. Physical review / C, 2016. 93(6): p. 064318 DOI: 10.1103/PhysRevC.93.064318. http://repository.gsi.de/record/200949

http://dx.doi.org/10.1103/PhysRevC.93.064318.

16. Blinne, A. and E. Strobel, Comparison of semiclassical and Wigner function methods in pair production in rotating fields. Physical review / D, 2016. 93(2): p. 025014 DOI: 10.1103/PhysRevD.93.025014. http://repository.gsi.de/record/200983

http://dx.doi.org/10.1103/PhysRevD.93.025014.

17. Blumenhagen, K.-H., et al., Erratum: Polarization transfer in Rayleigh scattering of hard x-rays (2016 New J. Phys. 18 103034). New journal of physics, 2016. 18(11): p. 119601 DOI: 10.1088/1367-2630/18/11/119601. http://repository.gsi.de/record/205471

http://dx.doi.org/10.1088/1367-2630/18/11/119601.

18. Blumenhagen, K.-H., et al., Polarization transfer in Rayleigh scattering of hard x-rays. New journal of physics, 2016. 18(10): p. 103034 DOI: 10.1088/1367-2630/18/10/103034. http://repository.gsi.de/record/201115

http://dx.doi.org/10.1088/1367-2630/18/10/103034.

19. Boehm, K.-J., et al., Design and Engineering of a Target for X-Ray Thomson Scattering Measurements on Matter at Extreme Densities and Gigabar Pressures. Fusion science and technology, 2016. 70(2): p. 324-331 DOI: 10.13182/FST15-242. http://repository.gsi.de/record/201099

http://dx.doi.org/10.13182/FST15-242.

20. Bogatskaya, A.V., et al., Polarization response in extreme nonlinear optics: when can the semiclassical approach be used? Laser physics letters, 2016. 13(4): p. 045301 DOI: 10.1088/1612-2011/13/4/045301. http://repository.gsi.de/record/200973

http://dx.doi.org/10.1088/1612-2011/13/4/045301.

21. Borchardt, J., H. Gies, and R. Sondenheimer, Global flow of the Higgs potential in a Yukawa model. The @European physical journal / C, 2016. 76(8): p. 472 DOI: 10.1140/epjc/s10052-016-4300-9. http://repository.gsi.de/record/200923

http://dx.doi.org/10.1140/epjc/s10052-016-4300-9.

22. Borm, B., et al., Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks. Review of scientific instruments, 2016. 87(9): p. 093104 DOI: 10.1063/1.4961666. http://repository.gsi.de/record/201098

http://dx.doi.org/10.1063/1.4961666.

23. Borovik, A., et al., Electron-impact single ionization of W$^{19+}$ ions. Physical review / A, 2016. 93(1): p. 012708 DOI: 10.1103/PhysRevA.93.012708. http://repository.gsi.de/record/189651

http://dx.doi.org/10.1103/PhysRevA.93.012708.

24. Braun, J., et al., Crystalline ground states in Polyakov-loop extended Nambu–Jona-Lasinio models. Physical review / D, 2016. 93(1): p. 014032 DOI: 10.1103/PhysRevD.93.014032. http://repository.gsi.de/record/200984

http://dx.doi.org/10.1103/PhysRevD.93.014032.

25. Breitkopf, S., et al., Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity. Applied physics / B, 2016. 122(12): p. 297 DOI: 10.1007/s00340-016-6574-x. http://repository.gsi.de/record/200893

http://dx.doi.org/10.1007/s00340-016-6574-x.

26. Breuer, L., et al., Secondary ion and neutral mass spectrometry with swift heavy ions: Organic molecules. Journal of vacuum science & technology / B, 2016. 34(3): p. 03H130 DOI: 10.1116/1.4943158. http://repository.gsi.de/record/187041

http://dx.doi.org/10.1116/1.4943158.

27. Butler, P.A., et al., TSR: A storage and cooling ring for HIE-ISOLDE. Nuclear instruments & methods in physics research / B, 2016. 376: p. 270 - 274 DOI: 10.1016/j.nimb.2015.12.006. http://repository.gsi.de/record/201123

http://dx.doi.org/10.1016/j.nimb.2015.12.006.

28. Butler, P.A., et al., TSR: A Storage Ring for HIE-ISOLDE. Acta physica Polonica / B, 2016. 47(3): p. 627 - 636 DOI: 10.5506/APhysPolB.47.627. http://repository.gsi.de/record/186993

http://dx.doi.org/10.5506/APhysPolB.47.627.

29. Cassinelli, M., et al., Low temperature annealing effects on the stability of Bi nanowires. Physica status solidi / A, 2016. 213(3): p. 603 - 609 DOI: 10.1002/pssa.201532613. http://repository.gsi.de/record/187003

http://dx.doi.org/10.1002/pssa.201532613.

30. Cayzac, W., et al., Simulations of the energy loss of ions at the stopping-power maximum in a laser-induced plasma. Journal of physics / Conference Series, 2016. 688: p. 012009 DOI: 10.1088/1742-6596/688/1/012009. http://repository.gsi.de/record/194918

http://dx.doi.org/10.1088/1742-6596/688/1/012009.

31. Clochard, M.-C., et al., Large area fabrication of self-standing nanoporous graphene-on-PMMA substrate. Materials letters, 2016. 184: p. 47 - 51 DOI: 10.1016/j.matlet.2016.07.133. http://repository.gsi.de/record/194905

http://dx.doi.org/10.1016/j.matlet.2016.07.133.

32. Cousens, S., et al., Temporal Structure of Attosecond Pulses from Laser-Driven Coherent Synchrotron Emission. Physical review letters, 2016. 116(8): p. 083901 DOI: 10.1103/PhysRevLett.116.083901. http://repository.gsi.de/record/201222

http://dx.doi.org/10.1103/PhysRevLett.116.083901.

33. Dimitrov, N., et al., Pulse front tilt measurement of femtosecond laser pulses. Optics communications, 2016. 371: p. 51 - 58 DOI: 10.1016/j.optcom.2016.03.054. http://repository.gsi.de/record/201220

http://dx.doi.org/10.1016/j.optcom.2016.03.054.

34. Döppner, T., et al., Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility. Review of scientific instruments, 2016. 87(11): p. 11E515 DOI: 10.1063/1.4959874. http://repository.gsi.de/record/201097

http://dx.doi.org/10.1063/1.4959874.

35. Drągowski, M., et al., Monte Carlo study of the effective Sherman function for electron polarimetry. Nuclear instruments & methods in physics research / B, 2016. 389-390: p. 48 - 55 DOI: 10.1016/j.nimb.2016.11.018. http://repository.gsi.de/record/200895

http://dx.doi.org/10.1016/j.nimb.2016.11.018.

36. Dromey, B., et al., Picosecond metrology of laser-driven proton bursts. Nature Communications, 2016. 7: p. 10642 - DOI: 10.1038/ncomms10642. http://repository.gsi.de/record/200977

http://dx.doi.org/10.1038/ncomms10642.

37. Duan, J., et al., Surface plasmonic spectroscopy revealing the oxidation dynamics of copper nanowires embedded in polycarbonate ion-track templates. Journal of materials chemistry / C, 2016. 4(18): p. 3956 - 3962 DOI: 10.1039/C5TC03897A. http://repository.gsi.de/record/186995

http://dx.doi.org/10.1039/C5TC03897A.

38. Duan, J.L., et al., Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission. ACS applied materials & interfaces, 2016. 8(1): p. 472 - 479 DOI: 10.1021/acsami.5b09374. http://repository.gsi.de/record/184634

http://dx.doi.org/10.1021/acsami.5b09374.

39. Ebrahimi, M.S., et al., Superconducting radio-frequency resonator in magnetic fields up to 6 T. Review of scientific instruments, 2016. 87(7): p. 075110 DOI: 10.1063/1.4958647. http://repository.gsi.de/record/201081

http://dx.doi.org/10.1063/1.4958647.

40. El-Said, A.S., et al., Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions. Nuclear instruments & methods in physics research / B, 2016. 382: p. 86 - 90 DOI: 10.1016/j.nimb.2016.04.058. http://repository.gsi.de/record/194877

http://dx.doi.org/10.1016/j.nimb.2016.04.058.

41. Faatz, B., et al., Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator. New journal of physics, 2016. 18(6): p. 062002 DOI: 10.1088/1367-2630/18/6/062002. http://repository.gsi.de/record/200943

http://dx.doi.org/10.1088/1367-2630/18/6/062002.

42. Filippin, L., et al., Multiconfiguration calculations of electronic isotope shift factors in Al i. Physical review / A, 2016. 94(6): p. 062508 DOI: 10.1103/PhysRevA.94.062508. http://repository.gsi.de/record/205470

http://dx.doi.org/10.1103/PhysRevA.94.062508.

43. Filippov, E.D., et al., Parameters of supersonic astrophysically-relevant plasma jets collimating via poloidal magnetic field measured by x-ray spectroscopy method, in 31st International Conference on Equations of State for Matter. 2016, IOP Publ.: Elbrus, Russia. p. 012114 - DOI: 10.1088/1742-6596/774/1/012114. http://repository.gsi.de/record/206395

http://dx.doi.org/10.1088/1742-6596/774/1/012114.

44. Fuchs, S., et al., Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation. Scientific reports, 2016. 6: p. 20658 - DOI: 10.1038/srep20658. http://repository.gsi.de/record/200980

http://dx.doi.org/10.1038/srep20658.

45. Gaida, C., et al., Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power. Optics letters, 2016. 41(17): p. 4130 - DOI: 10.1364/OL.41.004130. http://repository.gsi.de/record/200918

http://dx.doi.org/10.1364/OL.41.004130.

46. Gies, H., F. Karbstein, and N. Seegert, Photon merging and splitting in electromagnetic field inhomogeneities. Physical review / D, 2016. 93(8): p. 085034 DOI: 10.1103/PhysRevD.93.085034. http://repository.gsi.de/record/200967

http://dx.doi.org/10.1103/PhysRevD.93.085034.

47. Gies, H. and G. Torgrimsson, Critical Schwinger Pair Production. Physical review letters, 2016. 116(9): p. 090406 DOI: 10.1103/PhysRevLett.116.090406. http://repository.gsi.de/record/200975

http://dx.doi.org/10.1103/PhysRevLett.116.090406.

48. Gopal, A., et al., Smith–Purcell radiation in the terahertz regime using charged particle beams from laser–matter interactions. Laser and particle beams, 2016. 34(01): p. 187 - 191 DOI: 10.1017/S0263034615001093. http://repository.gsi.de/record/200972

http://dx.doi.org/10.1017/S0263034615001093.

49. Grum-Grzhimailo, A.N., et al., Photoelectron angular distributions and correlations in sequential double and triple atomic ionization by free electron lasers. Journal of modern optics, 2016. 63(4): p. 334 - 357 DOI: 10.1080/09500340.2015.1047805. http://repository.gsi.de/record/200942

http://dx.doi.org/10.1080/09500340.2015.1047805.

50. Gupta, S., et al., Conducting ion tracks generated by charge-selected swift heavy ions. Nuclear instruments & methods in physics research / B, 2016. 381: p. 76 - 83 DOI: 10.1016/j.nimb.2016.05.010. http://repository.gsi.de/record/189298

http://dx.doi.org/10.1016/j.nimb.2016.05.010.

51. Haber, J., et al., Collective strong coupling of X-rays and nuclei in a nuclear optical lattice. Nature photonics, 2016. 10(7): p. 445 - 449 DOI: 10.1038/nphoton.2016.77. http://repository.gsi.de/record/200953

http://dx.doi.org/10.1038/nphoton.2016.77.

52. Hädrich, S., et al., Energetic sub-2-cycle laser with 216  W average power. Optics letters, 2016. 41(18): p. 4332 - DOI: 10.1364/OL.41.004332. http://repository.gsi.de/record/200916

http://dx.doi.org/10.1364/OL.41.004332.

53. Hädrich, S., et al., Single-pass high harmonic generation at high repetition rate and photon flux. Journal of physics / B, 2016. 49(17): p. 172002 DOI: 10.1088/0953-4075/49/17/172002. http://repository.gsi.de/record/200924

http://dx.doi.org/10.1088/0953-4075/49/17/172002.

54. Hädrich, S., et al., Scalability of components for kW-level average power few-cycle lasers. Applied optics, 2016. 55(7): p. 1636 - DOI: 10.1364/AO.55.001636. http://repository.gsi.de/record/200969

http://dx.doi.org/10.1364/AO.55.001636.

55. Hahn, C., et al., CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation. Review of scientific instruments, 2016. 87(4): p. 043106 DOI: 10.1063/1.4945362. http://repository.gsi.de/record/200968

http://dx.doi.org/10.1063/1.4945362.

56. Hahn, M., et al., Storage ring cross section measurements for electron impact ionization of Fe$^{8+}$. Journal of physics / B, 2016. 49(8): p. 084006 DOI: 10.1088/0953-4075/49/8/084006. http://repository.gsi.de/record/186821

http://dx.doi.org/10.1088/0953-4075/49/8/084006.

57. Hansinger, P., et al., White light generated by femtosecond optical vortex beams. Journal of the Optical Society of America / B, 2016. 33(4): p. 681 - DOI: 10.1364/JOSAB.33.000681. http://repository.gsi.de/record/200961

http://dx.doi.org/10.1364/JOSAB.33.000681.

58. Hayrapetyan, A.G., et al., Electromagnetic wave propagation in spatially homogeneous yet smoothly time-varying dielectric media. Journal of quantitative spectroscopy & radiative transfer, 2016. 178: p. 158 - 166 DOI: 10.1016/j.jqsrt.2015.12.007. http://repository.gsi.de/record/201227

http://dx.doi.org/10.1016/j.jqsrt.2015.12.007.

59. Heylen, H., et al., Changes in nuclear structure along the Mn isotopic chain studied via charge radii. Physical review / C, 2016. 94(5): p. 054321 DOI: 10.1103/PhysRevC.94.054321. http://repository.gsi.de/record/200907

http://dx.doi.org/10.1103/PhysRevC.94.054321.

60. Hillenbrand, P.-M., et al., Strong asymmetry of the electron-loss-to-continuum cusp of multielectron U$^{28+}$ projectiles in near-relativistic collisions with gaseous targets. Physical review / A, 2016. 93(4): p. 042709 DOI: 10.1103/PhysRevA.93.042709. http://repository.gsi.de/record/186986

http://dx.doi.org/10.1103/PhysRevA.93.042709.

61. Hofbrucker, J., A.V. Volotka, and S. Fritzsche, Relativistic calculations of the nonresonant two-photon ionization of neutral atoms. Physical review / A, 2016. 94(6): p. 063412 DOI: 10.1103/PhysRevA.94.063412. http://repository.gsi.de/record/200897

http://dx.doi.org/10.1103/PhysRevA.94.063412.

62. Höfer, S., et al., Communication: The formation of rarefaction waves in semiconductors after ultrashort excitation probed by grazing incidence ultrafast time-resolved x-ray diffraction. Structural dynamics, 2016. 3(5): p. 051101 DOI: 10.1063/1.4963011. http://repository.gsi.de/record/200922

http://dx.doi.org/10.1063/1.4963011.

63. Hornung, M., et al., 54  J pulses with 18  nm bandwidth from a diode-pumped chirped-pulse amplification laser system. Optics letters, 2016. 41(22): p. 5413 - DOI: 10.1364/OL.41.005413. http://repository.gsi.de/record/200902

http://dx.doi.org/10.1364/OL.41.005413.

64. Ivanov, I.P., et al., Double-slit experiment in momentum space. epl, 2016. 115(4): p. 41001 DOI: 10.1209/0295-5075/115/41001. http://repository.gsi.de/record/201129

http://dx.doi.org/10.1209/0295-5075/115/41001.

65. Ivanov, I.P., et al., Elastic scattering of vortex electrons provides direct access to the Coulomb phase. Physical review / D, 2016. 94(7): p. 076001 DOI: 10.1103/PhysRevD.94.076001. http://repository.gsi.de/record/200911

http://dx.doi.org/10.1103/PhysRevD.94.076001.

66. Jauregui, C., et al., Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities. Optics express, 2016. 24(8): p. 7879 - DOI: 10.1364/OE.24.007879. http://repository.gsi.de/record/200964

http://dx.doi.org/10.1364/OE.24.007879.

67. Jean, C., et al., Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire. Nano letters, 2016. 16(10): p. 6592 - 6598 DOI: 10.1021/acs.nanolett.6b03260. http://repository.gsi.de/record/195744

http://dx.doi.org/10.1021/acs.nanolett.6b03260.

68. Kämpfer, T., et al., Linear polarization of the characteristic x-ray lines following inner-shell photoionization of tungsten. Physical review / A, 2016. 93(3): p. 033409 DOI: 10.1103/PhysRevA.93.033409. http://repository.gsi.de/record/186822

http://dx.doi.org/10.1103/PhysRevA.93.033409.

69. Kantsyrev, A.V., et al., Quadrupole lenses on the basis of permanent magnets for a PRIOR proton microscope prototype. Instruments and experimental techniques, 2016. 59(5): p. 712 - 723 DOI: 10.1134/S0020441216040072. http://repository.gsi.de/record/201096

http://dx.doi.org/10.1134/S0020441216040072.

70. Kar, S., et al., Guided post-acceleration of laser-driven ions by a miniature modular structure. Nature Communications, 2016. 7: p. 10792 - DOI: 10.1038/ncomms10792. http://repository.gsi.de/record/201223

http://dx.doi.org/10.1038/ncomms10792.

71. Karbstein, F. and C. Sundqvist, Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers. Physical review / D, 2016. 94(1): p. 013004 DOI: 10.1103/PhysRevD.94.013004. http://repository.gsi.de/record/200939

http://dx.doi.org/10.1103/PhysRevD.94.013004.

72. Keppler, S., et al., Tunable filters for precise spectral gain control in ultra-short-pulse laser systems. Optics letters, 2016. 41(20): p. 4708 - DOI: 10.1364/OL.41.004708. http://repository.gsi.de/record/200908

http://dx.doi.org/10.1364/OL.41.004708.

73. Keppler, S., et al., The generation of amplified spontaneous emission in high-power CPA laser systems. Laser & photonics reviews, 2016. 10(2): p. 264 - 277 DOI: 10.1002/lpor.201500186. http://repository.gsi.de/record/200971

http://dx.doi.org/10.1002/lpor.201500186.

74. Kharin, V.Y., D. Seipt, and S.G. Rykovanov, Temporal laser-pulse-shape effects in nonlinear Thomson scattering. Physical review / A, 2016. 93(6): p. 063801 DOI: 10.1103/PhysRevA.93.063801. http://repository.gsi.de/record/200948

http://dx.doi.org/10.1103/PhysRevA.93.063801.

75. Kienel, M., et al., 12  mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Optics letters, 2016. 41(14): p. 3343 - DOI: 10.1364/OL.41.003343. http://repository.gsi.de/record/200932

http://dx.doi.org/10.1364/OL.41.003343.

76. Klas, R., et al., Table-top milliwatt-class extreme ultraviolet high harmonic light source. Optica, 2016. 3(11): p. 1167 - DOI: 10.1364/OPTICA.3.001167. http://repository.gsi.de/record/200901

http://dx.doi.org/10.1364/OPTICA.3.001167.

77. Kohlfürst, C. and R. Alkofer, On the effect of time-dependent inhomogeneous magnetic fields in electron–positron pair production. Physics letters / B, 2016. 756: p. 371 - 375 DOI: 10.1016/j.physletb.2016.03.027. http://repository.gsi.de/record/200959

http://dx.doi.org/10.1016/j.physletb.2016.03.027.

78. Körner, J., J. Hein, and M. Kaluza, Compact Aberration-Free Relay-Imaging Multi-Pass Layouts for High-Energy Laser Amplifiers. Applied Sciences, 2016. 6(11): p. 353 - DOI: 10.3390/app6110353. http://repository.gsi.de/record/200899

http://dx.doi.org/10.3390/app6110353.

79. Körner, J., et al., Spatially and temporally resolved temperature measurement in laser media. Optics letters, 2016. 41(11): p. 2525 - DOI: 10.1364/OL.41.002525. http://repository.gsi.de/record/200944

http://dx.doi.org/10.1364/OL.41.002525.

80. Kostenko, O.F., et al., On the hot electrons and K α x-rays generation in the intense laser interaction with silver targets, in 31st International Conference on Equations of State for Matter (ELBRUS). 2016, IOP Publ.: Elbrus, Russia. p. 012112 DOI: 10.1088/1742-6596/774/1/012112. http://repository.gsi.de/record/206394

http://dx.doi.org/10.1088/1742-6596/774/1/012112.

81. Krasik, Y.E., et al., Underwater Electrical Explosion of Wires and Wire Arrays and Generation of Converging Shock Waves. IEEE transactions on plasma science, 2016. 44(4): p. 412 - 431 DOI: 10.1109/TPS.2015.2513757. http://repository.gsi.de/record/194917

http://dx.doi.org/10.1109/TPS.2015.2513757.

82. Kraus, D., et al., X-ray scattering measurements on imploding CH spheres at the National Ignition Facility. Physical review / E, 2016. 94(1): p. 011202 DOI: 10.1103/PhysRevE.94.011202. http://repository.gsi.de/record/194920

http://dx.doi.org/10.1103/PhysRevE.94.011202.

83. Kraus, D., et al., Platform for spectrally resolved x-ray scattering from imploding capsules at the National Ignition Facility. Journal of physics / Conference Series, 2016. 717: p. UNSP 012067 DOI: 10.1088/1742-6596/717/1/012067. http://repository.gsi.de/record/201100

http://dx.doi.org/10.1088/1742-6596/717/1/012067.

84. Kraus, D., et al., Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications, 2016. 7: p. 10970 DOI: 10.1038/ncomms10970. http://repository.gsi.de/record/194921

http://dx.doi.org/10.1038/ncomms10970.

85. Krey, J., et al., Effect of B$_2$O$_3$ and fluoride additions on the Yb$^{3+}$ luminescence of an alumosilicate glass in the system Li$_2$O/MgO/Al$_2$O$_3$/SiO$_2$. Optical materials express, 2016. 6(8): p. 2662 - DOI: 10.1364/OME.6.002662. http://repository.gsi.de/record/200926

http://dx.doi.org/10.1364/OME.6.002662.

86. Krieg, J., et al., Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi$_2$Te$_3$ Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy. Nano letters, 2016. 16(7): p. 4001 - 4007 DOI: 10.1021/acs.nanolett.6b00400. http://repository.gsi.de/record/195740

http://dx.doi.org/10.1021/acs.nanolett.6b00400.

87. Kübel, M., et al., Complete characterization of single-cycle double ionization of argon from the nonsequential to the sequential ionization regime. Physical review / A, 2016. 93(5): p. 053422 DOI: 10.1103/PhysRevA.93.053422. http://repository.gsi.de/record/200954

http://dx.doi.org/10.1103/PhysRevA.93.053422.

88. Kuschel, S., et al., Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch. Physical review accelerators and beams, 2016. 19(7): p. 071301 DOI: 10.1103/PhysRevAccelBeams.19.071301. http://repository.gsi.de/record/200936

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.071301.

89. Landgraf, B., et al., Broadband stimulated Raman backscattering. New journal of physics, 2016. 18(7): p. 073048 DOI: 10.1088/1367-2630/18/7/073048. http://repository.gsi.de/record/200931

http://dx.doi.org/10.1088/1367-2630/18/7/073048.

90. Lestinsky, M., et al., Physics book: CRYRING@ESR. European physical journal special topics, 2016. 225(5): p. 797 - 882 DOI: 10.1140/epjst/e2016-02643-6. http://repository.gsi.de/record/195722

http://dx.doi.org/10.1140/epjst/e2016-02643-6.

91. Li, H., et al., Intensity dependence of the dissociative ionization of DCl in few-cycle laser fields. Journal of physics / B, 2016. 49(1): p. 015601 DOI: 10.1088/0953-4075/49/1/015601. http://repository.gsi.de/record/200900

http://dx.doi.org/10.1088/0953-4075/49/1/015601.

92. Liebetrau, H., et al., High contrast, 86  fs, 35  mJ pulses from a diode-pumped, Yb:glass, double-chirped-pulse amplification laser system. Optics letters, 2016. 41(13): p. 3006 - DOI: 10.1364/OL.41.003006. http://repository.gsi.de/record/200934

http://dx.doi.org/10.1364/OL.41.003006.

93. Lushchik, A., et al., Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nuclear instruments & methods in physics research / B, 2016. 374: p. 90 - 96 DOI: 10.1016/j.nimb.2015.07.004. http://repository.gsi.de/record/201074

http://dx.doi.org/10.1016/j.nimb.2015.07.004.

94. Ma, G., et al., Control of transmission of right circularly polarized laser light in overdense plasma by applied magnetic field pulses. Physical review / E, 2016. 93(5): p. 053209 DOI: 10.1103/PhysRevE.93.053209. http://repository.gsi.de/record/201225

http://dx.doi.org/10.1103/PhysRevE.93.053209.

95. Meftah, A., et al., Data consistencies of swift heavy ion induced damage creation in yttrium iron garnet analyzed by different techniques. Nuclear instruments & methods in physics research / B, 2016. 366: p. 155 - 160 DOI: 10.1016/j.nimb.2015.10.030. http://repository.gsi.de/record/180924

http://dx.doi.org/10.1016/j.nimb.2015.10.030.

96. Mei, B., et al., Odd-even staggering in yields of neutron-deficient nuclei produced by projectile fragmentation. Physical review / C, 2016. 94(4): p. 044615 DOI: 10.1103/PhysRevC.94.044615. http://repository.gsi.de/record/201110

http://dx.doi.org/10.1103/PhysRevC.94.044615.

97. Meinerzhagen, F., et al., A new setup for the investigation of swift heavy ion induced particle emission and surface modifications. Review of scientific instruments, 2016. 87(1): p. 013903 - DOI: 10.1063/1.4939899. http://repository.gsi.de/record/187042

http://dx.doi.org/10.1063/1.4939899.

98. Minamisono, K., et al., Charge Radii of Neutron Deficient $^{52 , 53}$Fe Produced by Projectile Fragmentation. Physical review letters, 2016. 117(25): p. 252501 DOI: 10.1103/PhysRevLett.117.252501. http://repository.gsi.de/record/200898

http://dx.doi.org/10.1103/PhysRevLett.117.252501.

99. Mintsev, V., et al., Non-Ideal Plasma and Early Experiments at FAIR: HIHEX - Heavy Ion Heating and EXpansion. Contributions to plasma physics, 2016. 56(3-4): p. 281 - 285 DOI: 10.1002/ctpp.201500105. http://repository.gsi.de/record/194916

http://dx.doi.org/10.1002/ctpp.201500105.

100. Movsesyan, L., et al., Influence of electrodeposition parameters on the structure and morphology of ZnO nanowire arrays and networks synthesized in etched ion-track membranes. Semiconductor science and technology, 2016. 31(1): p. 014006 DOI: 10.1088/0268-1242/31/1/014006. http://repository.gsi.de/record/161400

http://dx.doi.org/10.1088/0268-1242/31/1/014006.

101. Mueller, M., et al., Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers. Optics express, 2016. 24(8): p. 7893 - DOI: 10.1364/OE.24.007893. http://repository.gsi.de/record/200965

http://dx.doi.org/10.1364/OE.24.007893.

102. Muench, F., et al., Electrodeposition and electroless plating of hierarchical metal superstructures composed of 1D nano- and microscale building blocks. Electrochimica acta, 2016. 202: p. 47 - 54 DOI: 10.1016/j.electacta.2016.03.188. http://repository.gsi.de/record/187043

http://dx.doi.org/10.1016/j.electacta.2016.03.188.

103. Müller, M., et al., 1 kW 1 mJ eight-channel ultrafast fiber laser. Optics letters, 2016. 41(15): p. 3439 - DOI: 10.1364/OL.41.003439. http://repository.gsi.de/record/200929

http://dx.doi.org/10.1364/OL.41.003439.

104. Müller, R.A., et al., Photoionization of neutral atoms by X waves carrying orbital angular momentum. Physical review / A, 2016. 94(4): p. 041402 DOI: 10.1103/PhysRevA.94.041402. http://repository.gsi.de/record/200909

http://dx.doi.org/10.1103/PhysRevA.94.041402.

105. Murböck, T., et al., A compact source for bunches of singly charged atomic ions. Review of scientific instruments, 2016. 87(4): p. 043302 DOI: 10.1063/1.4944946. http://repository.gsi.de/record/201082

http://dx.doi.org/10.1063/1.4944946.

106. Murböck, T., et al., Rapid crystallization of externally produced ions in a Penning trap. Physical review / A, 2016. 94(4): p. 043410 DOI: 10.1103/PhysRevA.94.043410. http://repository.gsi.de/record/201080

http://dx.doi.org/10.1103/PhysRevA.94.043410.

107. Nadzri, A., et al., Composition dependent thermal annealing behaviour of ion tracks in apatite. Nuclear instruments & methods in physics research / B, 2016. 379: p. 211 - 214 DOI: 10.1016/j.nimb.2016.04.050. http://repository.gsi.de/record/200458

http://dx.doi.org/10.1016/j.nimb.2016.04.050.

108. Najafi, M.A., et al., CsI–Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS). Nuclear instruments & methods in physics research / A, 2016. 836: p. 1 - 6 DOI: 10.1016/j.nima.2016.08.040. http://repository.gsi.de/record/196140

http://dx.doi.org/10.1016/j.nima.2016.08.040.

109. Nousch, T., et al., Spectral caustics in laser assisted Breit–Wheeler process. Physics letters / B, 2016. 755: p. 162 - 167 DOI: 10.1016/j.physletb.2016.01.062. http://repository.gsi.de/record/201224

http://dx.doi.org/10.1016/j.physletb.2016.01.062.

110. Ortner, A., et al., A novel experimental setup for energy loss and charge state measurements in dense moderately coupled plasma using laser-heated hohlraum targets. Journal of physics / Conference Series, 2016. 688: p. 012081 DOI: 10.1088/1742-6596/688/1/012081. http://repository.gsi.de/record/194919

http://dx.doi.org/10.1088/1742-6596/688/1/012081.

111. Otto, A., et al., Pair production by Schwinger and Breit–Wheeler processes in bi-frequent fields. Journal of plasma physics, 2016. 82(03): p. 655820301 DOI: 10.1017/S0022377816000428. http://repository.gsi.de/record/201226

http://dx.doi.org/10.1017/S0022377816000428.

112. Pavićević, M.K., et al., Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides ( $^{26}$Al, $^{36}$Cl, $^{3}$He, and $^{21}$Ne). Geochemistry, geophysics, geosystems, 2016. 17(2): p. 410 - 424 DOI: 10.1002/2015GC006054. http://repository.gsi.de/record/186987

http://dx.doi.org/10.1002/2015GC006054.

113. Pérez-Mitta, G., et al., The Influence of Divalent Anions on the Rectification Properties of Nanofluidic Diodes: Insights from Experiments and Theoretical Simulations. ChemPhysChem, 2016. 17(17): p. 2718 - 2725 DOI: 10.1002/cphc.201600370. http://repository.gsi.de/record/200456

http://dx.doi.org/10.1002/cphc.201600370.

114. Pérez-Mitta, G., et al., Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols. Nanoscale, 2016. 8(3): p. 1470 - 1478 DOI: 10.1039/C5NR08190D. http://repository.gsi.de/record/187005

http://dx.doi.org/10.1039/C5NR08190D.

115. Peshkov, A.A., et al., Absorption of twisted light by a mesoscopic atomic target. Physica scripta, 2016. 91(6): p. 064001 DOI: 10.1088/0031-8949/91/6/064001. http://repository.gsi.de/record/200956

http://dx.doi.org/10.1088/0031-8949/91/6/064001.

116. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Hydrodynamic growth and decay of planar shock waves. Physics of plasmas, 2016. 23(3): p. 032704 DOI: 10.1063/1.4943198. http://repository.gsi.de/record/201089

http://dx.doi.org/10.1063/1.4943198.

117. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Entropy shaping by shock decay. Physics of plasmas, 2016. 23(11): p. 112704 DOI: 10.1063/1.4967463. http://repository.gsi.de/record/196330

http://dx.doi.org/10.1063/1.4967463.

118. Podorov, S.G. and E. Förster, Direct inversion of digital 3D Fraunhofer holography maps. Applied optics, 2016. 55(3): p. A150 - DOI: 10.1364/AO.55.00A150. http://repository.gsi.de/record/200981

http://dx.doi.org/10.1364/AO.55.00A150.

119. Pratt, R.H., R.A. Müller, and A. Surzhykov, Sum rules for the polarization correlations in photoionization and bremsstrahlung. Physical review / A, 2016. 93(5): p. 053421 DOI: 10.1103/PhysRevA.93.053421. http://repository.gsi.de/record/189648

http://dx.doi.org/10.1103/PhysRevA.93.053421.

120. Pugachev, L.P., et al., Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets. Nuclear instruments & methods in physics research / A, 2016. 829: p. 88 - 93 DOI: 10.1016/j.nima.2016.02.053. http://repository.gsi.de/record/194922

http://dx.doi.org/10.1016/j.nima.2016.02.053.

121. Qiu, Y., et al., Role of Particle Focusing in Resistive-Pulse Technique: Direction-Dependent Velocity in Micropores. ACS nano, 2016. 10(3): p. 3509 - 3517 DOI: 10.1021/acsnano.5b07709. http://repository.gsi.de/record/200465

http://dx.doi.org/10.1021/acsnano.5b07709.

122. Rothhardt, J., et al., High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. Optics express, 2016. 24(16): p. 18133 DOI: 10.1364/OE.24.018133. http://repository.gsi.de/record/200927

http://dx.doi.org/10.1364/OE.24.018133.

123. Rothhardt, J., et al., 100  W average power femtosecond laser at 343  nm. Optics letters, 2016. 41(8): p. 1885 - DOI: 10.1364/OL.41.001885. http://repository.gsi.de/record/200966

http://dx.doi.org/10.1364/OL.41.001885.

124. Rykovanov, S.G., et al., Reply to “Comment on ‘Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping’”. Physical review accelerators and beams, 2016. 19(9): p. 098002 DOI: 10.1103/PhysRevAccelBeams.19.098002. http://repository.gsi.de/record/201221

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.098002.

125. Rykovanov, S.G., et al., Tunable polarization plasma channel undulator for narrow bandwidth photon emission. Physical review accelerators and beams, 2016. 19(9): p. 090703 DOI: 10.1103/PhysRevAccelBeams.19.090703. http://repository.gsi.de/record/200921

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.090703.

126. Sachan, R., et al., Insights on dramatic radial fluctuations in track formation by energetic ions. Scientific reports, 2016. 6: p. 27196 DOI: 10.1038/srep27196. http://repository.gsi.de/record/200459

http://dx.doi.org/10.1038/srep27196.

127. Schäfer, M., I. Huet, and H. Gies, Worldline numerics for energy-momentum tensors in Casimir geometries. Journal of physics / A, 2016. 49(13): p. 135402 - DOI: 10.1088/1751-8113/49/13/135402. http://repository.gsi.de/record/200976

http://dx.doi.org/10.1088/1751-8113/49/13/135402.

128. Schippers, S., et al., Prominent role of multielectron processes in K -shell double and triple photodetachment of oxygen anions. Physical review / A, 2016. 94(4): p. 041401 DOI: 10.1103/PhysRevA.94.041401. http://repository.gsi.de/record/200910

http://dx.doi.org/10.1103/PhysRevA.94.041401.

129. Schöffler, M.S., et al., Laser-subcycle control of sequential double-ionization dynamics of helium. Physical review / A, 2016. 93(6): p. 063421 DOI: 10.1103/PhysRevA.93.063421. http://repository.gsi.de/record/200946

http://dx.doi.org/10.1103/PhysRevA.93.063421.

130. Scholtes, T., et al., Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range. Physical review / A, 2016. 94(1): p. 013403 DOI: 10.1103/PhysRevA.94.013403. http://repository.gsi.de/record/200935

http://dx.doi.org/10.1103/PhysRevA.94.013403.

131. Schönlein, A., et al., Generation and characterization of warm dense matter isochorically heated by laser-induced relativistic electrons in a wire target. epl, 2016. 114(4): p. 45002 - DOI: 10.1209/0295-5075/114/45002. http://repository.gsi.de/record/201086

http://dx.doi.org/10.1209/0295-5075/114/45002.

132. Schubert, I., et al., Porous Gold Nanowires: Plasmonic Response and Surface-Enhanced Infrared Absorption. Advanced optical materials, 2016. 1: p. 1-8 DOI: 10.1002/adom.201600430. http://repository.gsi.de/record/194862

http://dx.doi.org/10.1002/adom.201600430.

133. Seipt, D., et al., Analytical results for nonlinear Compton scattering in short intense laser pulses. Journal of plasma physics, 2016. 82(02): p. 655820203 DOI: 10.1017/S002237781600026X. http://repository.gsi.de/record/189646

http://dx.doi.org/10.1017/S002237781600026X.

134. Seipt, D., et al., Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light. Physical review / A, 2016. 94(5): p. 053420 DOI: 10.1103/PhysRevA.94.053420. http://repository.gsi.de/record/200906

http://dx.doi.org/10.1103/PhysRevA.94.053420.

135. Seipt, D., et al., Caustic structures in x-ray Compton scattering off electrons driven by a short intense laser pulse. New journal of physics, 2016. 18(2): p. 023044 DOI: 10.1088/1367-2630/18/2/023044. http://repository.gsi.de/record/185777

http://dx.doi.org/10.1088/1367-2630/18/2/023044.

136. Serrat, C., et al., Avalanche of stimulated forward scattering in high harmonic generation. Optics express, 2016. 24(8): p. 8028 - DOI: 10.1364/OE.24.008028. http://repository.gsi.de/record/200963

http://dx.doi.org/10.1364/OE.24.008028.

137. Shah, C., et al., Strong higher-order resonant contributions to x-ray line polarization in hot plasmas. Physical review / E, 2016. 93(6): p. 061201 DOI: 10.1103/PhysRevE.93.061201. http://repository.gsi.de/record/200951

http://dx.doi.org/10.1103/PhysRevE.93.061201.

138. Shamblin, J., et al., Structural response of titanate pyrochlores to swift heavy ion irradiation. Acta materialia, 2016. 117: p. 207 - 215 DOI: 10.1016/j.actamat.2016.07.017. http://repository.gsi.de/record/200455

http://dx.doi.org/10.1016/j.actamat.2016.07.017.

139. Shuai, P., et al., An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors. Nuclear instruments & methods in physics research / B, 2016. 376: p. 311 - 315 DOI: 10.1016/j.nimb.2016.02.006. http://repository.gsi.de/record/201124

http://dx.doi.org/10.1016/j.nimb.2016.02.006.

140. Siminos, E., et al., Modeling ultrafast shadowgraphy in laser-plasma interaction experiments. Plasma physics and controlled fusion, 2016. 58(6): p. 065004 DOI: 10.1088/0741-3335/58/6/065004. http://repository.gsi.de/record/200960

http://dx.doi.org/10.1088/0741-3335/58/6/065004.

141. Stockem Novo, A., et al., Optimizing laser-driven proton acceleration from overdense targets. Scientific reports, 2016. 6: p. 29402 DOI: 10.1038/srep29402. http://repository.gsi.de/record/200940

http://dx.doi.org/10.1038/srep29402.

142. Surzhykov, A., D. Seipt, and S. Fritzsche, Probing the energy flow in Bessel light beams using atomic photoionization. Physical review / A, 2016. 94(3): p. 033420 DOI: 10.1103/PhysRevA.94.033420. http://repository.gsi.de/record/200920

http://dx.doi.org/10.1103/PhysRevA.94.033420.

143. Tadesse, G.K., et al., High speed and high resolution table-top nanoscale imaging. Optics letters, 2016. 41(22): p. 5170 - DOI: 10.1364/OL.41.005170. http://repository.gsi.de/record/200904

http://dx.doi.org/10.1364/OL.41.005170.

144. Tahir, N.A., et al., High energy density physics effects predicted in simulations of the CERN HiRadMat beam–target interaction experiments. High energy density physics, 2016. 21: p. 27 - 34 DOI: 10.1016/j.hedp.2016.09.002. http://repository.gsi.de/record/201101

http://dx.doi.org/10.1016/j.hedp.2016.09.002.

145. Tahir, N.A., et al., Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components. Physical review accelerators and beams, 2016. 19(8): p. 081002 DOI: 10.1103/PhysRevAccelBeams.19.081002. http://repository.gsi.de/record/201088

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.081002.

146. Tahir, N.A., et al., High Energy Density Physics Research Using Intense Heavy Ion Beam at FAIR: The HEDgeHOB Program, in 8th International Conference on Inertial Fusion Sciences and Applications. 2016, IOP Publ.: Bristol, UK. p. 012118 DOI: 10.1088/1742-6596/688/1/012118. http://repository.gsi.de/record/186453

http://dx.doi.org/10.1088/1742-6596/688/1/012118.

147. Tanikawa, T., et al., First observation of SASE radiation using the compact wide-spectral-range XUV spectrometer at FLASH2. Nuclear instruments & methods in physics research / A, 2016. 830: p. 170 - 175 DOI: 10.1016/j.nima.2016.05.088. http://repository.gsi.de/record/200914

http://dx.doi.org/10.1016/j.nima.2016.05.088.

148. Titov, A.I., et al., Determination of the carrier envelope phase for short, circularly polarized laser pulses. Physical review / D, 2016. 93(4): p. 045010 DOI: 10.1103/PhysRevD.93.045010. http://repository.gsi.de/record/200979

http://dx.doi.org/10.1103/PhysRevD.93.045010.

149. Toulemonde, M., W. Assmann, and C. Trautmann, Electronic sputtering of vitreous SiO$_2$: Experimental and modeling results. Nuclear instruments & methods in physics research / B, 2016. 379: p. 2 - 8 DOI: 10.1016/j.nimb.2016.03.023. http://repository.gsi.de/record/189555

http://dx.doi.org/10.1016/j.nimb.2016.03.023.

150. Tracy, C.L., et al., Anisotropic expansion and amorphization of Ga$_2$O$_3$ irradiated with 946MeV Au ions. Nuclear instruments & methods in physics research / B, 2016. 374: p. 40 - 44 DOI: 10.1016/j.nimb.2015.08.059. http://repository.gsi.de/record/187044

http://dx.doi.org/10.1016/j.nimb.2015.08.059.

151. Tracy, C.L., et al., Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation. Physical review / B, 2016. 94(6): p. 064102 DOI: 10.1103/PhysRevB.94.064102. http://repository.gsi.de/record/194863

http://dx.doi.org/10.1103/PhysRevB.94.064102.

152. Tu, X.L., et al., Indirect mass determination for the neutron-deficient nuclides $^{44}$V, $^{48}$Mn, $^{52}$Co and $^{56}$Cu. Nuclear physics <Amsterdam> / A, 2016. 945: p. 89 - 94 DOI: 10.1016/j.nuclphysa.2015.09.016. http://repository.gsi.de/record/185641

http://dx.doi.org/10.1016/j.nuclphysa.2015.09.016.

153. Varentsov, D., et al., Commissioning of the PRIOR proton microscope. Review of scientific instruments, 2016. 87(2): p. 023303 DOI: 10.1063/1.4941685. http://repository.gsi.de/record/201095

http://dx.doi.org/10.1063/1.4941685.

154. Volotka, A.V., et al., Nuclear Excitation by Two-Photon Electron Transition. Physical review letters, 2016. 117(24): p. 243001 DOI: 10.1103/PhysRevLett.117.243001. http://repository.gsi.de/record/200492

http://dx.doi.org/10.1103/PhysRevLett.117.243001.

155. Volotka, A.V., et al., Many-electron effects on x-ray Rayleigh scattering by highly charged He-like ions. Physical review / A, 2016. 93(2): p. 023418 DOI: 10.1103/PhysRevA.93.023418. http://repository.gsi.de/record/186145

http://dx.doi.org/10.1103/PhysRevA.93.023418.

156. Wagner, F., et al., Accelerating ions with high-energy short laser pulses from submicrometer thick targets. High power laser science and engineering, 2016. 4: p. e45 DOI: 10.1017/hpl.2016.44. http://repository.gsi.de/record/200567

http://dx.doi.org/10.1017/hpl.2016.44.

157. Wagner, F., et al., Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH$_2$ Targets. Physical review letters, 2016. 116(20): p. 205002 DOI: 10.1103/PhysRevLett.116.205002. http://repository.gsi.de/record/200957

http://dx.doi.org/10.1103/PhysRevLett.116.205002.

158. Wagner, M.F.P., et al., Fabrication and thermoelectrical characterization of three-dimensional nanowire networks. Physica status solidi / A, 2016. 213(3): p. 610 - 619 DOI: 10.1002/pssa.201532616. http://repository.gsi.de/record/187004

http://dx.doi.org/10.1002/pssa.201532616.

159. Wahyutama, I.S., et al., Influence of detector noise in holographic imaging with limited photon flux. Optics express, 2016. 24(19): p. 22013 DOI: 10.1364/OE.24.022013. http://repository.gsi.de/record/200915

http://dx.doi.org/10.1364/OE.24.022013.

160. Wang, J.W., et al., High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma. Physical review accelerators and beams, 2016. 19(2): p. 021301 DOI: 10.1103/PhysRevAccelBeams.19.021301. http://repository.gsi.de/record/200978

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.021301.

161. Wen, Q., et al., Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films. Advanced functional materials, 2016. 26(32): p. 5796 - 5803 DOI: 10.1002/adfm.201601689. http://repository.gsi.de/record/189579

http://dx.doi.org/10.1002/adfm.201601689.

162. Wu, Z.W., et al., Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light. Physical review / A, 2016. 93(6): p. 063413 DOI: 10.1103/PhysRevA.93.063413. http://repository.gsi.de/record/200947

http://dx.doi.org/10.1103/PhysRevA.93.063413.

163. Xu, X., et al., Identification of the Lowest T = 2 , J$^π$ = 0$^+$ Isobaric Analog State in $^{52}$Co and Its Impact on the Understanding of β -Decay Properties of $^{52}$Ni. Physical review letters, 2016. 117(18): p. 182503 DOI: 10.1103/PhysRevLett.117.182503. http://repository.gsi.de/record/195812

http://dx.doi.org/10.1103/PhysRevLett.117.182503.

164. Yan, X., et al., Preface [ Nuclear Physics in Astrophysics VI (NPA6) ]. Journal of physics / Conference Series, 2016. 665: p. 011001 DOI: 10.1088/1742-6596/665/1/011001. http://repository.gsi.de/record/184272

http://dx.doi.org/10.1088/1742-6596/665/1/011001.

165. Yan, X., et al., Recent results on mass measurements of exotic nuclides in storage rings. Nuclear Physics in Astrophysics VI, 2016. 665: p. 012053 DOI: 10.1088/1742-6596/665/1/012053. http://repository.gsi.de/record/185618

http://dx.doi.org/10.1088/1742-6596/665/1/012053.

166. Yang, X.F., et al., Isomer Shift and Magnetic Moment of the Long-Lived 1/2$^+$ Isomer in $^{79}_{30}$Zn$_{49}$: Signature of Shape Coexistence near $^{78}$Ni. Physical review letters, 2016. 116(18): p. 182502 DOI: 10.1103/PhysRevLett.116.182502. http://repository.gsi.de/record/201651

http://dx.doi.org/10.1103/PhysRevLett.116.182502.

167. Yerokhin, V.A., et al., Electric dipole polarizabilities of Rydberg states of alkali-metal atoms. Physical review / A, 2016. 94(3): p. 032503 DOI: 10.1103/PhysRevA.94.032503. http://repository.gsi.de/record/200919

http://dx.doi.org/10.1103/PhysRevA.94.032503.

168. Yeung, M., et al., Experimental observation of attosecond control over relativistic electron bunches with two-colour fields. Nature photonics, 2016. 11(1): p. 32 - 35 DOI: 10.1038/nphoton.2016.239. http://repository.gsi.de/record/200894

http://dx.doi.org/10.1038/nphoton.2016.239.

169. Zabels, R., et al., MeV-energy Xe ion-induced damage in LiF: The contribution of electronic and nuclear stopping mechanisms. Physica status solidi / B, 2016. 253(8): p. 1511 - 1516 DOI: 10.1002/pssb.201552704. http://repository.gsi.de/record/201075

http://dx.doi.org/10.1002/pssb.201552704.

170. Zhang, Y.H., et al., Storage ring mass spectrometry for nuclear structure and astrophysics research. Physica scripta, 2016. 91(7): p. 073002 DOI: 10.1088/0031-8949/91/7/073002. http://repository.gsi.de/record/189644

http://dx.doi.org/10.1088/0031-8949/91/7/073002.

171. Zubova, N.A., et al., Isotope shifts of the 2p$_{3 / 2}$ − 2p$_{1/2}$ transition in B-like ions. Physical review / A, 2016. 93(5): p. 052502 DOI: 10.1103/PhysRevA.93.052502. http://repository.gsi.de/record/200955

http://dx.doi.org/10.1103/PhysRevA.93.052502.