ISI/Scopus publications to the research unit RU3 (2013-2016)
2013
1. Afra, B., et al., SAXS investigations of the morphology of swift heavy ion tracks in α-quartz. Journal of physics / Condensed matter, 2013. 25(4): p. 045006 DOI: 10.1088/0953-8984/25/4/045006. http://repository.gsi.de/record/65685
http://dx.doi.org/10.1088/0953-8984/25/4/045006.
2. Ali, M., et al., Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries. Chemical communications, 2013. 49(78): p. 8770 DOI: 10.1039/c3cc45318a. http://repository.gsi.de/record/65693
http://dx.doi.org/10.1039/c3cc45318a.
3. Ali, M., et al., Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The @journal of physical chemistry <Washington, DC> / C, 2013. 117(35): p. 18234 - 18242 DOI: 10.1021/jp4054555. http://repository.gsi.de/record/65697
http://dx.doi.org/10.1021/jp4054555.
4. Amaro, P., et al., Absolute measurements and simulations of x-ray line energies of highly charged ions with a double-crystal spectrometer. Physica scripta, 2013. T156: p. 014104 DOI: 10.1088/0031-8949/2013/T156/014104. http://repository.gsi.de/record/64798
http://dx.doi.org/10.1088/0031-8949/2013/T156/014104.
5. Andelkovic, Z., et al., Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions. Physical review / A, 2013. 87(3): p. 033423 DOI: 10.1103/PhysRevA.87.033423. http://repository.gsi.de/record/51812
http://dx.doi.org/10.1103/PhysRevA.87.033423.
6. Artemyev, A.N., et al., Ab initio calculations of the $2p_{3/2}-2p_{1/2}$ fine-structure splitting in boronlike ions. Physical review / A, 2013. 88(3): p. 032518 DOI: 10.1103/PhysRevA.88.032518. http://repository.gsi.de/record/55467
http://dx.doi.org/10.1103/PhysRevA.88.032518.
7. Atanasov, D.R., et al., Half-life measurements of highly charged radionuclides. Physica scripta, 2013. T156: p. 014026 DOI: 10.1088/0031-8949/2013/T156/014026. http://repository.gsi.de/record/54909
http://dx.doi.org/10.1088/0031-8949/2013/T156/014026.
8. Aurand, B., et al., Preparation and characterization of nanometer-thin freestanding polymer foils for laser-ion acceleration. Journal of polymer science / B, 2013. 51(18): p. 1355 - 1360 DOI: 10.1002/polb.23340. http://repository.gsi.de/record/65817
http://dx.doi.org/10.1002/polb.23340.
9. Aurand, B., et al., Radiation pressure-assisted acceleration of ions using multi-component foils in high-intensity laser–matter interactions. New journal of physics, 2013. 15(3): p. 033031 DOI: 10.1088/1367-2630/15/3/033031. http://repository.gsi.de/record/54274
http://dx.doi.org/10.1088/1367-2630/15/3/033031.
10. Baker, K., et al., The quest for axions and other new light particles. Annalen der Physik, 2013. 525(6): p. A93 - A99 DOI: 10.1002/andp.201300727. http://repository.gsi.de/record/65819
http://dx.doi.org/10.1002/andp.201300727.
11. Banaś, D., et al., Two-photon energy distribution from the decay of the $2 ^{1}S_{0}$ state in He-like uranium. Physical review / A, 2013. 87(6): p. 062510 DOI: 10.1103/PhysRevA.87.062510. http://repository.gsi.de/record/53842
http://dx.doi.org/10.1103/PhysRevA.87.062510.
12. Banaś, D., et al., K-shell differential radiative recombination rates for bare uranium ions interacting with low-energy electrons. Physica scripta, 2013. T156: p. 014045 - DOI: 10.1088/0031-8949/2013/T156/014045. http://repository.gsi.de/record/54931
http://dx.doi.org/10.1088/0031-8949/2013/T156/014045.
13. Banaś, D., et al., Differential L-shell radiative recombination rate coefficients for bare uranium ions interacting with low-energy electrons. European physical journal special topics, 2013. 222(9): p. 2317 - 2322 DOI: 10.1140/epjst/e2013-02011-2. http://repository.gsi.de/record/55490
http://dx.doi.org/10.1140/epjst/e2013-02011-2.
14. Banerjee, S., et al., Temperature dependent emission and absorption cross section of $Yb^{3+}$ doped yttrium lanthanum oxide (YLO) ceramic and its application in diode pumped amplifier. Optics express, 2013. 21(S4): p. A726 - DOI: 10.1364/OE.21.00A726. http://repository.gsi.de/record/65826
http://dx.doi.org/10.1364/OE.21.00A726.
15. Belliard, L., et al., Vibrational response of free standing single copper nanowire through transient reflectivity microscopy. Journal of applied physics, 2013. 114(19): p. 193509 DOI: 10.1063/1.4831957. http://repository.gsi.de/record/65689
http://dx.doi.org/10.1063/1.4831957.
16. Blaum, K., J. Dilling, and W. Nörtershäuser, Precision atomic physics techniques for nuclear physics with radioactive beams. Physica scripta, 2013. T152: p. 014017 - DOI: 10.1088/0031-8949/2013/T152/014017. http://repository.gsi.de/record/51816
http://dx.doi.org/10.1088/0031-8949/2013/T152/014017.
17. Blumenhagen, K.-H., et al., Fully digital readout of segmented solid state detectors. Physica scripta, 2013. T156: p. 014102 - DOI: 10.1088/0031-8949/2013/T156/014102. http://repository.gsi.de/record/54923
http://dx.doi.org/10.1088/0031-8949/2013/T156/014102.
18. Bosch, F., et al., Beta decay of highly charged ions. Physica scripta, 2013. T156: p. 014025 DOI: 10.1088/0031-8949/2013/T156/014025. http://repository.gsi.de/record/54899
http://dx.doi.org/10.1088/0031-8949/2013/T156/014025.
19. Bosch, F. and Y. Litvinov, Mass and lifetime measurements at the experimental storage ring of GSI. International journal of mass spectrometry, 2013. 349-350: p. 151 - 161 DOI: 10.1016/j.ijms.2013.04.025. http://repository.gsi.de/record/54872
http://dx.doi.org/10.1016/j.ijms.2013.04.025.
20. Bosch, F., Y.A. Litvinov, and T. Stöhlker, Nuclear physics with unstable ions at storage rings. Progress in particle and nuclear physics, 2013. 73: p. 84 - 140 DOI: 10.1016/j.ppnp.2013.07.002. http://repository.gsi.de/record/54928
http://dx.doi.org/10.1016/j.ppnp.2013.07.002.
21. Brambilla, N., F. Karbstein, and A. Vairo, Symmetries of the three-heavy-quark system and the color-singlet static energy at next-to-next-to-leading logarithmic order. Physical review / D, 2013. 87(7): p. 074014 DOI: 10.1103/PhysRevD.87.074014. http://repository.gsi.de/record/65832
http://dx.doi.org/10.1103/PhysRevD.87.074014.
22. Brandau, C., et al., Probing nuclear properties by resonant atomic collisions between electrons and ions. Physica scripta, 2013. T156: p. 014050 DOI: 10.1088/0031-8949/2013/T156/014050. http://repository.gsi.de/record/54924
http://dx.doi.org/10.1088/0031-8949/2013/T156/014050.
23. Busold, S., et al., Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source. Physical review / Special topics / Accelerators and beams, 2013. 16(10): p. 101302 DOI: 10.1103/PhysRevSTAB.16.101302. http://repository.gsi.de/record/65429
http://dx.doi.org/10.1103/PhysRevSTAB.16.101302.
24. Cayzac, W., et al., A spectrometer on chemical vapour deposition-diamond basis for the measurement of the charge-state distribution of heavy ions in a laser-generated plasma. Review of scientific instruments, 2013. 84(4): p. 043301 DOI: 10.1063/1.4798539. http://repository.gsi.de/record/65422
http://dx.doi.org/10.1063/1.4798539.
25. Chen, W., et al., Charge transfer of slow highly charged xenon ions in collisions with magnesium atoms. Physical review / A, 2013. 88(5): p. 052703 DOI: 10.1103/PhysRevA.88.052703. http://repository.gsi.de/record/56271
http://dx.doi.org/10.1103/PhysRevA.88.052703.
26. Colgan, J., et al., Exotic Dense-Matter States Pumped by a Relativistic Laser Plasma in the Radiation-Dominated Regime. Physical review letters, 2013. 110(12): p. 125001 DOI: 10.1103/PhysRevLett.110.125001. http://repository.gsi.de/record/65836
http://dx.doi.org/10.1103/PhysRevLett.110.125001.
27. Dauletbekova, A., et al., LiF crystals irradiated with 150MeV Kr ions: Peculiarities of color center creation and thermal annealing. Nuclear instruments & methods in physics research / B, 2013. 295: p. 89 - 93 DOI: 10.1016/j.nimb.2012.11.004. http://repository.gsi.de/record/49544
http://dx.doi.org/10.1016/j.nimb.2012.11.004.
28. Demmler, S., et al., Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses. Optics letters, 2013. 38(23): p. 5051 - DOI: 10.1364/OL.38.005051. http://repository.gsi.de/record/65837
http://dx.doi.org/10.1364/OL.38.005051.
29. Döbrich, B., et al., Magnetically amplified light-shining-through-walls via virtual minicharged particles. Physical review / D, 2013. 87(2): p. 025022 DOI: 10.1103/PhysRevD.87.025022. http://repository.gsi.de/record/65821
http://dx.doi.org/10.1103/PhysRevD.87.025022.
30. Dolde, F., et al., Room-temperature entanglement between single defect spins in diamond. Nature physics, 2013. 9(3): p. 139 - 143 DOI: 10.1038/nphys2545. http://repository.gsi.de/record/65687
http://dx.doi.org/10.1038/nphys2545.
31. El-Said, A.S., et al., Surface nanostructuring of $LiNbO_3$ by high-density electronic excitations. Nuclear instruments & methods in physics research / B, 2013. 315: p. 265 - 268 DOI: 10.1016/j.nimb.2013.03.008. http://repository.gsi.de/record/65676
http://dx.doi.org/10.1016/j.nimb.2013.03.008.
32. Fedotova, S., et al., Cooling of highly charged ions — the HITRAP facility and Cooler trap. Physica scripta, 2013. T156: p. 014095 DOI: 10.1088/0031-8949/2013/T156/014095. http://repository.gsi.de/record/54904
http://dx.doi.org/10.1088/0031-8949/2013/T156/014095.
33. Fernandes, S., et al., In-situ electric resistance measurements and annealing effects of graphite exposed to swift heavy ions. Nuclear instruments & methods in physics research / B, 2013. 314: p. 125 - 129 DOI: 10.1016/j.nimb.2013.04.060. http://repository.gsi.de/record/65536
http://dx.doi.org/10.1016/j.nimb.2013.04.060.
34. Frank, A., et al., Energy Loss and Charge Transfer of Argon in a Laser-Generated Carbon Plasma. Physical review letters, 2013. 110(11): p. 115001 DOI: 10.1103/PhysRevLett.110.115001. http://repository.gsi.de/record/65428
http://dx.doi.org/10.1103/PhysRevLett.110.115001.
35. Fritzsche, S., T. Stöhlker, and A. Surzhykov, 16th international conference on the physics of highly charged ions. Physica scripta, 2013. T156: p. 010301 DOI: 10.1088/0031-8949/2013/T156/010301. http://repository.gsi.de/record/54900
http://dx.doi.org/10.1088/0031-8949/2013/T156/010301.
36. Fuchs, S., et al., Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources. Review of scientific instruments, 2013. 84(2): p. 023101 DOI: 10.1063/1.4788732. http://repository.gsi.de/record/65844
http://dx.doi.org/10.1063/1.4788732.
37. Gardiner, S.A., et al., Tunnelling of the 3rd kind: A test of the effective non-locality of quantum field theory. epl, 2013. 101(6): p. 61001 DOI: 10.1209/0295-5075/101/61001. http://repository.gsi.de/record/65820
http://dx.doi.org/10.1209/0295-5075/101/61001.
38. Geithner, R., et al., Low temperature permeability and current noise of ferromagnetic pickup coils. Cryogenics, 2013. 54: p. 16 - 19 DOI: 10.1016/j.cryogenics.2012.10.002. http://repository.gsi.de/record/54292
http://dx.doi.org/10.1016/j.cryogenics.2012.10.002.
39. Gies, H., F. Karbstein, and N. Seegert, Quantum reflection as a new signature of quantum vacuum nonlinearity. New journal of physics, 2013. 15(8): p. 083002 DOI: 10.1088/1367-2630/15/8/083002. http://repository.gsi.de/record/65818
http://dx.doi.org/10.1088/1367-2630/15/8/083002.
40. Gopal, A., et al., Observation of Gigawatt-Class THz Pulses from a Compact Laser-Driven Particle Accelerator. Physical review letters, 2013. 111(7): p. 074802 DOI: 10.1103/PhysRevLett.111.074802. http://repository.gsi.de/record/65854
http://dx.doi.org/10.1103/PhysRevLett.111.074802.
41. Gopal, A., et al., Characterization of 700 μJ T rays generated during high-power laser solid interaction. Optics letters, 2013. 38(22): p. 4705 - DOI: 10.1364/OL.38.004705. http://repository.gsi.de/record/65851
http://dx.doi.org/10.1364/OL.38.004705.
42. Goyon, C., et al., Experimental Approach to Interaction Physics Challenges of the Shock Ignition Scheme Using Short Pulse Lasers. Physical review letters, 2013. 111(23): p. 235006 DOI: 10.1103/PhysRevLett.111.235006. http://repository.gsi.de/record/65483
http://dx.doi.org/10.1103/PhysRevLett.111.235006.
43. Guerra, M., et al., Analysis of the charge state distribution in an ECRIS Ar plasma using high-resolution x-ray spectra. Journal of physics / B, 2013. 46(6): p. 065701 DOI: 10.1088/0953-4075/46/6/065701. http://repository.gsi.de/record/64805
http://dx.doi.org/10.1088/0953-4075/46/6/065701.
44. Gumberidze, A. and SPARC Collaboration, Atomic physics at the future facility for antiproton and ion research: a status report. Physica scripta, 2013. T156: p. 014084 DOI: 10.1088/0031-8949/2013/T156/014084. http://repository.gsi.de/record/54894
http://dx.doi.org/10.1088/0031-8949/2013/T156/014084.
45. Gumberidze, A., et al., Electron- and Proton-Impact Excitation of Hydrogenlike Uranium in Relativistic Collisions. Physical review letters, 2013. 110(21): p. 213201 DOI: 10.1103/PhysRevLett.110.213201. http://repository.gsi.de/record/53843
http://dx.doi.org/10.1103/PhysRevLett.110.213201.
46. Gunst, J., et al., Parity-nonconservation effects on the radiative recombination of heavy hydrogenlike ions. Physical review / A, 2013. 87(3): p. 032714 DOI: 10.1103/PhysRevA.87.032714. http://repository.gsi.de/record/51821
http://dx.doi.org/10.1103/PhysRevA.87.032714.
47. Günther, M.M., et al., NAIS: Nuclear activation-based imaging spectroscopy. Review of scientific instruments, 2013. 84(7): p. 073305 DOI: 10.1063/1.4815826. http://repository.gsi.de/record/65480
http://dx.doi.org/10.1063/1.4815826.
48. Hädrich, S., et al., Nonlinear compression to sub-30-fs, 05 mJ pulses at 135 W of average power. Optics letters, 2013. 38(19): p. 3866 - DOI: 10.1364/OL.38.003866. http://repository.gsi.de/record/65838
http://dx.doi.org/10.1364/OL.38.003866.
49. Hagmann, S., et al., Few-body quantum dynamics of high- Z ions studied at the future relativistic high-energy storage ring. Physica scripta, 2013. T156: p. 014086 - DOI: 10.1088/0031-8949/2013/T156/014086. http://repository.gsi.de/record/54884
http://dx.doi.org/10.1088/0031-8949/2013/T156/014086.
50. Hahn, M., et al., STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF $Fe^{13+}$ AND SINGLE IONIZATION OF $Fe^{16+}$ AND $Fe^{17+}$. The @astrophysical journal / 1, 2013. 767(1): p. 47 - DOI: 10.1088/0004-637X/767/1/47. http://repository.gsi.de/record/51825
http://dx.doi.org/10.1088/0004-637X/767/1/47.
51. Hammer, H.-W., A. Nogga, and A. Schwenk, Colloquium: Three-body forces: From cold atoms to nuclei. Reviews of modern physics, 2013. 85(1): p. 197 - 217 DOI: 10.1103/RevModPhys.85.197. http://repository.gsi.de/record/49585
http://dx.doi.org/10.1103/RevModPhys.85.197.
52. Hayrapetyan, A.G. and S. Fritzsche, Bessel beams of laser-driven two-level atoms. Physica scripta, 2013. T156: p. 014067 DOI: 10.1088/0031-8949/2013/T156/014067. http://repository.gsi.de/record/65862
http://dx.doi.org/10.1088/0031-8949/2013/T156/014067.
53. Hayrapetyan, A.G., et al., Bessel beams of two-level atoms driven by a linearly polarized laser field. The @European physical journal / D, 2013. 67(8): p. 167 DOI: 10.1140/epjd/e2013-30191-x. http://repository.gsi.de/record/65815
http://dx.doi.org/10.1140/epjd/e2013-30191-x.
54. Heeg, K.P., et al., Vacuum-Assisted Generation and Control of Atomic Coherences at X-Ray Energies. Physical review letters, 2013. 111(7): p. 073601 DOI: 10.1103/PhysRevLett.111.073601. http://repository.gsi.de/record/65834
http://dx.doi.org/10.1103/PhysRevLett.111.073601.
55. Hilbert, V., et al., An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers. Review of scientific instruments, 2013. 84(9): p. 095111 DOI: 10.1063/1.4821146. http://repository.gsi.de/record/65833
http://dx.doi.org/10.1063/1.4821146.
56. Hillenbrand, P.-M., et al., Future experiments using forward electron spectroscopy to study the quantum dynamics of high- Z ions at the ESR/CRYRING storage rings. Physica scripta, 2013. T156: p. 014087 DOI: 10.1088/0031-8949/2013/T156/014087. http://repository.gsi.de/record/54886
http://dx.doi.org/10.1088/0031-8949/2013/T156/014087.
57. Hofmann, I., Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons. Physical review / Special topics / Accelerators and beams, 2013. 16(4): p. 041302 DOI: 10.1103/PhysRevSTAB.16.041302. http://repository.gsi.de/record/54277
http://dx.doi.org/10.1103/PhysRevSTAB.16.041302.
58. Hornung, M., et al., High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS. Optics letters, 2013. 38(5): p. 718 - DOI: 10.1364/OL.38.000718. http://repository.gsi.de/record/65829
http://dx.doi.org/10.1364/OL.38.000718.
59. Jahrsetz, T. and A. Surzhykov, Two-photon transitions in few-electron ions in the presence of static electric fields. Physica scripta, 2013. T156: p. 014069 DOI: 10.1088/0031-8949/2013/T156/014069. http://repository.gsi.de/record/54892
http://dx.doi.org/10.1088/0031-8949/2013/T156/014069.
60. Jansen, F., et al., High-power thermally guiding index-antiguiding-core fibers. Optics letters, 2013. 38(4): p. 510 - 512 DOI: 10.1364/OL.38.000510. http://repository.gsi.de/record/65859
http://dx.doi.org/10.1364/OL.38.000510.
61. Jauregui, C., et al., Passive mitigation strategies for mode instabilities in high-power fiber laser systems. Optics express, 2013. 21(16): p. 19375 DOI: 10.1364/OE.21.019375. http://repository.gsi.de/record/65856
http://dx.doi.org/10.1364/OE.21.019375.
62. Jochmann, A., et al., High Resolution Energy-Angle Correlation Measurement of Hard X Rays from Laser-Thomson Backscattering. Physical review letters, 2013. 111(11): p. 114803 DOI: 10.1103/PhysRevLett.111.114803. http://repository.gsi.de/record/56274
http://dx.doi.org/10.1103/PhysRevLett.111.114803.
63. Kahaly, S., et al., Direct Observation of Density-Gradient Effects in Harmonic Generation from Plasma Mirrors. Physical review letters, 2013. 110(17): p. 175001 DOI: 10.1103/PhysRevLett.110.175001. http://repository.gsi.de/record/65865
http://dx.doi.org/10.1103/PhysRevLett.110.175001.
64. Karbstein, F., Photon polarization tensor in a homogeneous magnetic or electric field. Physical review / D, 2013. 88(8): p. 085033 DOI: 10.1103/PhysRevD.88.085033. http://repository.gsi.de/record/65831
http://dx.doi.org/10.1103/PhysRevD.88.085033.
65. Khan, S.A., et al., Sputtering yield of amorphous $^{13}C$ thin films under swift heavy-ion irradiation. Nuclear instruments & methods in physics research / B, 2013. 314: p. 34 - 38 DOI: 10.1016/j.nimb.2013.05.044. http://repository.gsi.de/record/65677
http://dx.doi.org/10.1016/j.nimb.2013.05.044.
66. Kiefer, D., et al., Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet. Nature Communications, 2013. 4: p. 1763 DOI: 10.1038/ncomms2775. http://repository.gsi.de/record/65866
http://dx.doi.org/10.1038/ncomms2775.
67. Kiefer, T., T. Schlegel, and M.C. Kaluza, Plasma expansion into vacuum assuming a steplike electron energy distribution. Physical review / E, 2013. 87(4): p. 043110 DOI: 10.1103/PhysRevE.87.043110. http://repository.gsi.de/record/65828
http://dx.doi.org/10.1103/PhysRevE.87.043110.
68. Kienel, M., et al., Analysis of passively combined divided-pulse amplification as an energy-scaling concept. Optics express, 2013. 21(23): p. 29031 DOI: 10.1364/OE.21.029031. http://repository.gsi.de/record/65845
http://dx.doi.org/10.1364/OE.21.029031.
69. Kienle, P., et al., High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like $^{142}Pm^{60+}$ ions. Physics letters / B, 2013. 726(4-5): p. 638 - 645 DOI: 10.1016/j.physletb.2013.09.033. http://repository.gsi.de/record/64731
http://dx.doi.org/10.1016/j.physletb.2013.09.033.
70. Klenke, A., et al., 530 W, 13 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Optics letters, 2013. 38(13): p. 2283 DOI: 10.1364/OL.38.002283. http://repository.gsi.de/record/65840
http://dx.doi.org/10.1364/OL.38.002283.
71. Klenke, A., et al., Divided-pulse nonlinear compression. Optics letters, 2013. 38(22): p. 4593-4596 DOI: 10.1364/OL.38.004593. http://repository.gsi.de/record/65846
http://dx.doi.org/10.1364/OL.38.004593.
72. Körner, J., et al., Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled $Yb^3+:CaF_2$. Optics express, 2013. 21(23): p. 29006 DOI: 10.1364/OE.21.029006. http://repository.gsi.de/record/65822
http://dx.doi.org/10.1364/OE.21.029006.
73. Kozhedub, Y.S., et al., Relativistic calculations of inner-shell atomic processes in low-energy ion–atom collisions. Physica scripta, 2013. T156: p. 014053 DOI: 10.1088/0031-8949/2013/T156/014053. http://repository.gsi.de/record/54889
http://dx.doi.org/10.1088/0031-8949/2013/T156/014053.
74. Kraus, D., et al., Probing the Complex Ion Structure in Liquid Carbon at 100 GPa. Physical review letters, 2013. 111(25): p. 255501 DOI: 10.1103/PhysRevLett.111.255501. http://repository.gsi.de/record/65423
http://dx.doi.org/10.1103/PhysRevLett.111.255501.
75. Krauser, J., et al., Conductive tracks of 30-MeV C60 clusters in doped and undoped tetrahedral amorphous carbon. Nuclear instruments & methods in physics research / B, 2013. 307: p. 265 - 268 DOI: 10.1016/j.nimb.2012.12.081. http://repository.gsi.de/record/65680
http://dx.doi.org/10.1016/j.nimb.2012.12.081.
76. Krebs, M., et al., Towards isolated attosecond pulses at megahertz repetition rates. Nature photonics, 2013. 7(7): p. 555 - 559 DOI: 10.1038/nphoton.2013.131. http://repository.gsi.de/record/65839
http://dx.doi.org/10.1038/nphoton.2013.131.
77. Kreim, S., et al., Recent exploits of the ISOLTRAP mass spectrometer. Nuclear instruments & methods in physics research / B, 2013. 317: p. 492 - 500 DOI: 10.1016/j.nimb.2013.07.072. http://repository.gsi.de/record/64808
http://dx.doi.org/10.1016/j.nimb.2013.07.072.
78. Kübel, M., et al., Nonsequential double ionization of $N_{2}$ in a near-single-cycle laser pulse. Physical review / A, 2013. 88(2): p. 023418 DOI: 10.1103/PhysRevA.88.023418. http://repository.gsi.de/record/65853
http://dx.doi.org/10.1103/PhysRevA.88.023418.
79. Kuhn, S., et al., $Sm^{3+}$-doped $La_2O_3–Al_2O_3–SiO_2$-glasses: structure, fluorescence and thermal expansion. Journal of materials science, 2013. 48(22): p. 8014 - 8022 DOI: 10.1007/s10853-013-7613-1. http://repository.gsi.de/record/65824
http://dx.doi.org/10.1007/s10853-013-7613-1.
80. LaForge, A.C., et al., Initial-state selective study of ionization dynamics in ion-Li collisions. Journal of physics / B, 2013. 46(3): p. 031001 - DOI: 10.1088/0953-4075/46/3/031001. http://repository.gsi.de/record/49562
http://dx.doi.org/10.1088/0953-4075/46/3/031001.
81. Li, W., et al., Effect of doping on the radiation response of conductive $Nb–SrTiO_3$. Nuclear instruments & methods in physics research / B, 2013. 302: p. 40 - 47 DOI: 10.1016/j.nimb.2013.03.010. http://repository.gsi.de/record/65682
http://dx.doi.org/10.1016/j.nimb.2013.03.010.
82. Lindenfels, D., et al., Half-open Penning trap with efficient light collection for precision laser spectroscopy of highly charged ions. Hyperfine interactions, 2013. xx: p. 1 DOI: 10.1007/s10751-013-0961-z. http://repository.gsi.de/record/64859
http://dx.doi.org/10.1007/s10751-013-0961-z.
83. Linusson, P., et al., Single-photon multiple ionization forming double vacancies in the $2p$ subshell of argon. Physical review / A, 2013. 87(4): p. 043409 DOI: 10.1103/PhysRevA.87.043409. http://repository.gsi.de/record/65864
http://dx.doi.org/10.1103/PhysRevA.87.043409.
84. Litvinov, Y.A., et al., Nuclear physics experiments with ion storage rings. Nuclear instruments & methods in physics research / B, 2013. 317: p. 603 - 616 DOI: 10.1016/j.nimb.2013.07.025. http://repository.gsi.de/record/64723
http://dx.doi.org/10.1016/j.nimb.2013.07.025.
85. Lushchik, A., et al., On the mechanisms of radiation damage and prospects of their suppression in complex metal oxides. Physica status solidi / B, 2013. 250(2): p. 261 - 270 DOI: 10.1002/pssb.201200488. http://repository.gsi.de/record/49547
http://dx.doi.org/10.1002/pssb.201200488.
86. Maiorova, A.V., et al., Production and diagnostics of spin-polarized heavy ions in the sequential two-electron radiative recombination. Physica scripta, 2013. T156: p. 014046 DOI: 10.1088/0031-8949/2013/T156/014046. http://repository.gsi.de/record/54907
http://dx.doi.org/10.1088/0031-8949/2013/T156/014046.
87. Maltsev, I.A., et al., Relativistic calculations of charge transfer probabilities in $U^{92+} – U^{91+} (1s)$ collisions using the basis set of cubic Hermite splines. Physica scripta, 2013. T156: p. 014056 DOI: 10.1088/0031-8949/2013/T156/014056. http://repository.gsi.de/record/54908
http://dx.doi.org/10.1088/0031-8949/2013/T156/014056.
88. Manea, V., et al., Collective degrees of freedom of neutron-rich A≈100 nuclei and the first mass measurement of the short-lived nuclide $^{100}Rb$. Physical review / C, 2013. 88(5): p. 054322 DOI: 10.1103/PhysRevC.88.054322. http://repository.gsi.de/record/64555
http://dx.doi.org/10.1103/PhysRevC.88.054322.
89. Märtin, R., et al., Target-thickness effects in electron–atom bremsstrahlung. Physica scripta, 2013. T156: p. 014070 DOI: 10.1088/0031-8949/2013/T156/014070. http://repository.gsi.de/record/54887
http://dx.doi.org/10.1088/0031-8949/2013/T156/014070.
90. Marx, B., et al., High-Precision X-Ray Polarimetry. Physical review letters, 2013. 110(25): p. 254801 DOI: 10.1103/PhysRevLett.110.254801. http://repository.gsi.de/record/56273
http://dx.doi.org/10.1103/PhysRevLett.110.254801.
91. Matei, E., et al., Magnetic configurations of Ni–Cu alloy nanowires obtained by the template method. Journal of nanoparticle research, 2013. 15(8): p. 1863 DOI: 10.1007/s11051-013-1863-3. http://repository.gsi.de/record/65690
http://dx.doi.org/10.1007/s11051-013-1863-3.
92. Matula, O., S. Fritzsche, and A. Surzhykov, Polarization correlations between photons emitted in dielectronic recombination of high-Z ions. Physica scripta, 2013. T156: p. 014051 - DOI: 10.1088/0031-8949/2013/T156/014051. http://repository.gsi.de/record/54926
http://dx.doi.org/10.1088/0031-8949/2013/T156/014051.
93. Matula, O., et al., Atomic ionization of hydrogen-like ions by twisted photons: angular distribution of emitted electrons. Journal of physics / B, 2013. 46(20): p. 205002 DOI: 10.1088/0953-4075/46/20/205002. http://repository.gsi.de/record/54927
http://dx.doi.org/10.1088/0953-4075/46/20/205002.
94. McConnell, S., A. Artemyev, and A. Surzhykov, Treatment of $U^{92+}–U^{91+}$ collisions in spherical co-ordinates: going beyond the monopole approximation. Physica scripta, 2013. T156: p. 014055 DOI: 10.1088/0031-8949/2013/T156/014055. http://repository.gsi.de/record/54893
http://dx.doi.org/10.1088/0031-8949/2013/T156/014055.
95. Medvedev, N.A., et al., Formation of the defect halo of swift heavy ion tracks in LiF due to spatial redistribution of valence holes. Physica status solidi / B, 2013. 250(4): p. 850 - 857 DOI: 10.1002/pssb.201200720. http://repository.gsi.de/record/65683
http://dx.doi.org/10.1002/pssb.201200720.
96. Medvedev, N.A., et al., Effect of spatial redistribution of valence holes on the formation of a defect halo of swift heavy-ion tracks in LiF. Physical review / B, 2013. 87(10): p. 104103 DOI: 10.1103/PhysRevB.87.104103. http://repository.gsi.de/record/49541
http://dx.doi.org/10.1103/PhysRevB.87.104103.
97. Mooser, A., et al., Resolution of Single Spin Flips of a Single Proton. Physical review letters, 2013. 110(14): p. 140405 DOI: 10.1103/PhysRevLett.110.140405. http://repository.gsi.de/record/56268
http://dx.doi.org/10.1103/PhysRevLett.110.140405.
98. Murböck, T., et al., SpecTrap: precision spectroscopy of highly charged ions—status and prospects. Physica scripta, 2013. T156: p. 014096 DOI: 10.1088/0031-8949/2013/T156/014096. http://repository.gsi.de/record/54896
http://dx.doi.org/10.1088/0031-8949/2013/T156/014096.
99. Nakano, Y., et al., Resonant coherent excitation of the lithiumlike uranium ion: A scheme for heavy-ion spectroscopy. Physical review / A, 2013. 87(6): p. 060501 DOI: 10.1103/PhysRevA.87.060501. http://repository.gsi.de/record/64847
http://dx.doi.org/10.1103/PhysRevA.87.060501.
100. Nasir, S., et al., Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with “caged” lysine chains. The @journal of chemical physics, 2013. 138(3): p. 034709 - DOI: 10.1063/1.4775811. http://repository.gsi.de/record/49577
http://dx.doi.org/10.1063/1.4775811.
101. Neumann, R., Science and technology on the nanoscale with swift heavy ions in matter. Nuclear instruments & methods in physics research / B, 2013. 314: p. 4 - 10 DOI: 10.1016/j.nimb.2013.04.035. http://repository.gsi.de/record/65695
http://dx.doi.org/10.1016/j.nimb.2013.04.035.
102. Ni, P.A., et al., Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils. Physics of plasmas, 2013. 20(8): p. 083111 DOI: 10.1063/1.4818147. http://repository.gsi.de/record/65481
http://dx.doi.org/10.1063/1.4818147.
103. Nörtershäuser, W., et al., First observation of the ground-state hyperfine transition in $^{209}Bi^{80+}$. Physica scripta, 2013. T156: p. 014016 DOI: 10.1088/0031-8949/2013/T156/014016. http://repository.gsi.de/record/54895
http://dx.doi.org/10.1088/0031-8949/2013/T156/014016.
104. Otto, H.-J., et al., Improved Modal Reconstruction for Spatially and Spectrally Resolved Imaging $S^2$. Journal of lightwave technology, 2013. 31(8): p. 1295 - 1299 DOI: 10.1109/JLT.2013.2242430. http://repository.gsi.de/record/65858
http://dx.doi.org/10.1109/JLT.2013.2242430.
105. Otto, H.-J., et al., Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Optics express, 2013. 21(14): p. 17285 - 17298 DOI: 10.1364/OE.21.017285. http://repository.gsi.de/record/65857
http://dx.doi.org/10.1364/OE.21.017285.
106. Papuga, J., et al., Spins and Magnetic Moments of $^{49}K$ and $^{51}K$: Establishing the $1/2^{+}$ and $3/2^{+}$ Level Ordering Beyond N=28. Physical review letters, 2013. 110(17): p. 172503 DOI: 10.1103/PhysRevLett.110.172503. http://repository.gsi.de/record/51836
http://dx.doi.org/10.1103/PhysRevLett.110.172503.
107. Pietschmann, J.-F., et al., Rectification properties of conically shaped nanopores: consequences of miniaturization. Physical chemistry, chemical physics, 2013. 15(39): p. 16917 DOI: 10.1039/c3cp53105h. http://repository.gsi.de/record/65686
http://dx.doi.org/10.1039/c3cp53105h.
108. Pikuz, S.A., et al., Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses. High energy density physics, 2013. 9(3): p. 560 - 567 DOI: 10.1016/j.hedp.2013.05.008. http://repository.gsi.de/record/65835
http://dx.doi.org/10.1016/j.hedp.2013.05.008.
109. Piriz, A.R., S.A. Piriz, and N.A. Tahir, High pressure generation by hot electrons driven ablation. Physics of plasmas: devoted to original contributions to and reviews of the physics of plasmas, including magnetofluid mechanics, kinetic theory and statistical mechanics of fully and partially ionized gases, 2013. 20: p. 112704 DOI: 10.1063/1.4833680. http://repository.gsi.de/record/65420
http://dx.doi.org/10.1063/1.4833680.
110. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Rayleigh-Taylor stability boundary at solid-liquid interfaces. Physical review / E, 2013. 88: p. 023026 DOI: 10.1103/PhysRevE.88.023026. http://repository.gsi.de/record/65421
http://dx.doi.org/10.1103/PhysRevE.88.023026.
111. Piriz, A.R. and N.A. Tahir, Physics of ablative Rayleigh–Taylor and Landau–Darrieus instabilities. New journal of physics, 2013. 15(1): p. 015013 DOI: 10.1088/1367-2630/15/1/015013. http://repository.gsi.de/record/49576
http://dx.doi.org/10.1088/1367-2630/15/1/015013.
112. Povarnitsyn, M.E., et al., Laser irradiation of thin films: Effect of energy transformation. Laser and particle beams, 2013. 31(04): p. 663 - 671 DOI: 10.1017/S0263034613000700. http://repository.gsi.de/record/65484
http://dx.doi.org/10.1017/S0263034613000700.
113. Ramirez, P., et al., Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry communications, 2013. 31: p. 137 - 140 DOI: 10.1016/j.elecom.2013.03.026. http://repository.gsi.de/record/65692
http://dx.doi.org/10.1016/j.elecom.2013.03.026.
114. Rathje, T., et al., Coherent Control at Its Most Fundamental: Carrier-Envelope-Phase-Dependent Electron Localization in Photodissociation of a $H_{2}^{+}$ Molecular Ion Beam Target. Physical review letters, 2013. 111(9): p. 093002 DOI: 10.1103/PhysRevLett.111.093002. http://repository.gsi.de/record/65852
http://dx.doi.org/10.1103/PhysRevLett.111.093002.
115. Reuschl, R., et al., Lifetime measurement of the $2 ^3P_0$ state in He-like uranium. Physica scripta, 2013. T156: p. 014024 - DOI: 10.1088/0031-8949/2013/T156/014024. http://repository.gsi.de/record/54903
http://dx.doi.org/10.1088/0031-8949/2013/T156/014024.
116. Riedel, R., et al., Single-shot pulse duration monitor for extreme ultraviolet and X-ray free-electron lasers. Nature Communications, 2013. 4: p. 1731 DOI: 10.1038/ncomms2754. http://repository.gsi.de/record/65869
http://dx.doi.org/10.1038/ncomms2754.
117. Riedel, R., et al., Long-term stabilization of high power optical parametric chirped-pulse amplifiers. Optics express, 2013. 21(23): p. 28987 - 28999 DOI: 10.1364/OE.21.028987. http://repository.gsi.de/record/65868
http://dx.doi.org/10.1364/OE.21.028987.
118. Rodriguez, M.D., et al., The influence of swift heavy ion irradiation on the recrystallization of amorphous $Fe_{80}B_{20}$. Microelectronic engineering, 2013. 102: p. 64 - 66 DOI: 10.1016/j.mee.2012.05.030. http://repository.gsi.de/record/49598
http://dx.doi.org/10.1016/j.mee.2012.05.030.
119. Rodriguez Prieto, G., et al., Dynamic stabilization of Rayleigh-Taylor instability: Experiments with Newtonian fluids as surrogates for ablation fronts. Physics of plasmas, 2013. 20(1): p. 012706 DOI: 10.1063/1.4789552. http://repository.gsi.de/record/65424
http://dx.doi.org/10.1063/1.4789552.
120. Rodriguez, V.A., et al., Development of a Superconducting Transverse-Gradient Undulator for Laser-Wakefield Accelerators. IEEE transactions on applied superconductivity, 2013. 23(3): p. 4101505 - 4101505 DOI: 10.1109/TASC.2013.2240151. http://repository.gsi.de/record/65827
http://dx.doi.org/10.1109/TASC.2013.2240151.
121. Rothhardt, J., et al., Thermal effects in high average power optical parametric amplifiers. Optics letters, 2013. 38(5): p. 763 - DOI: 10.1364/OL.38.000763. http://repository.gsi.de/record/65841
http://dx.doi.org/10.1364/OL.38.000763.
122. Russakova, A., et al., Color center accumulation in LiF crystals under irradiation with MeV ions: Optical spectroscopy and modeling. Nuclear instruments & methods in physics research / B, 2013. 313: p. 21 - 25 DOI: 10.1016/j.nimb.2013.08.007. http://repository.gsi.de/record/65691
http://dx.doi.org/10.1016/j.nimb.2013.08.007.
123. Salem, S., et al., Angular distribution of photons for the simultaneous excitation and ionization of He-like uranium ions in relativistic ion-atom collisions. Physical review / A, 2013. 88(1): p. 012701 DOI: 10.1103/PhysRevA.88.012701. http://repository.gsi.de/record/56272
http://dx.doi.org/10.1103/PhysRevA.88.012701.
124. Schauries, D., et al., Temperature dependence of ion track formation in quartz and apatite. Journal of applied crystallography, 2013. 46(6): p. 1558 - 1563 DOI: 10.1107/S0021889813022802. http://repository.gsi.de/record/65675
http://dx.doi.org/10.1107/S0021889813022802.
125. Schnell, M., et al., Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator. Nature Communications, 2013. 4: p. 2421 DOI: 10.1038/ncomms3421. http://repository.gsi.de/record/65825
http://dx.doi.org/10.1038/ncomms3421.
126. Schwab, M.B., et al., Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions. Applied physics letters, 2013. 103(19): p. 191118 DOI: 10.1063/1.4829489. http://repository.gsi.de/record/65823
http://dx.doi.org/10.1063/1.4829489.
127. Shi, Y.-L., et al., Polarization of M2 Line Emitted Following Electron-Impact Excitation of Beryllium-Like Ions. Chinese physics letters, 2013. 30(6): p. 063401 DOI: 10.1088/0256-307X/30/6/063401. http://repository.gsi.de/record/65863
http://dx.doi.org/10.1088/0256-307X/30/6/063401.
128. Shi, Y.-L., et al., Theory of X-Ray Anisotropy and Polarization Following the Dielectronic Recombination of Initially Hydrogen-Like Ions. Chinese physics letters, 2013. 30(2): p. 023402 - DOI: 10.1088/0256-307X/30/2/023402. http://repository.gsi.de/record/51849
http://dx.doi.org/10.1088/0256-307X/30/2/023402.
129. Sirse, N., et al., Chlorine atom densities in the $(3{\rm p}^{5})^{2} {\rm P}_{1/2}^{\rm o}$ excited spin–orbit state measured by two-photon absorption laser-induced fluorescence in a chlorine inductively coupled plasma. Journal of physics / D, 2013. 46(29): p. 295203 DOI: 10.1088/0022-3727/46/29/295203. http://repository.gsi.de/record/65816
http://dx.doi.org/10.1088/0022-3727/46/29/295203.
130. Sobiczewski, A. and Y.A. Litvinov, Quality of theoretical masses in various regions of the nuclear chart. Physica scripta, 2013. T154: p. 014001 - DOI: 10.1088/0031-8949/2013/T154/014001. http://repository.gsi.de/record/51853
http://dx.doi.org/10.1088/0031-8949/2013/T154/014001.
131. Spillmann, U., et al., Employing digital pulse processing electronics for the readout of a Si(Li)—Compton—polarimeter for the SPARC collaboration. Physica scripta, 2013. T156: p. 014103 DOI: 10.1088/0031-8949/2013/T156/014103. http://repository.gsi.de/record/54888
http://dx.doi.org/10.1088/0031-8949/2013/T156/014103.
132. Stanja, J., et al., Mass spectrometry and decay spectroscopy of isomers across the Z=82 shell closure. Physical review / C, 2013. 88(5): p. 054304 DOI: 10.1103/PhysRevC.88.054304. http://repository.gsi.de/record/64558
http://dx.doi.org/10.1103/PhysRevC.88.054304.
133. Stöhlker, T., et al., SPARC experiments at the high-energy storage ring. Physica scripta, 2013. T156: p. 014085 DOI: 10.1088/0031-8949/2013/T156/014085. http://repository.gsi.de/record/54885
http://dx.doi.org/10.1088/0031-8949/2013/T156/014085.
134. Stolterfoht, N., et al., Areal density effects on the blocking of 3-keV $Ne^{7+}$ ions guided through nanocapillaries in polymers. Physical review / A, 2013. 88(3): p. 032902 DOI: 10.1103/PhysRevA.88.032902. http://repository.gsi.de/record/65679
http://dx.doi.org/10.1103/PhysRevA.88.032902.
135. Sturm, S., et al., g-factor measurement of hydrogenlike $^{28}Si^{13+}$ as a challenge to QED calculations. Physical review / A, 2013. 87(3): p. 030501 DOI: 10.1103/PhysRevA.87.030501. http://repository.gsi.de/record/51854
http://dx.doi.org/10.1103/PhysRevA.87.030501.
136. Stutzki, F., et al., 24 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality. Optics letters, 2013. 38(2): p. 97 - 99 DOI: 10.1364/OL.38.000097. http://repository.gsi.de/record/65860
http://dx.doi.org/10.1364/OL.38.000097.
137. Surzhykov, A., et al., Hyperfine-induced effects on the linear polarization of $Kα_{1}$ emission from heliumlike ions. Physical review / A, 2013. 87(5): p. 052507 DOI: 10.1103/PhysRevA.87.052507. http://repository.gsi.de/record/53447
http://dx.doi.org/10.1103/PhysRevA.87.052507.
138. Surzhykov, A., et al., Parity violation in beryllium-like heavy ions. Physica scripta, 2013. T156: p. 014027 DOI: 10.1088/0031-8949/2013/T156/014027. http://repository.gsi.de/record/65813
http://dx.doi.org/10.1088/0031-8949/2013/T156/014027.
139. Surzhykov, A., R.H. Pratt, and S. Fritzsche, Two-photon decay of inner-shell vacancies in heavy atoms. Physical review / A, 2013. 88(4): p. 042512 DOI: 10.1103/PhysRevA.88.042512. http://repository.gsi.de/record/55508
http://dx.doi.org/10.1103/PhysRevA.88.042512.
140. Surzhykov, A., et al., Polarization correlations in the elastic Rayleigh scattering of photons by hydrogenlike ions. Physical review / A, 2013. 88(6): p. 062515 DOI: 10.1103/PhysRevA.88.062515. http://repository.gsi.de/record/65812
http://dx.doi.org/10.1103/PhysRevA.88.062515.
141. Szabo, C.I., et al., Ion temperature and x-ray line width measurements of highly charged argon ions in an ECR ion source. Physica scripta, 2013. T156: p. 014077 DOI: 10.1088/0031-8949/2013/T156/014077. http://repository.gsi.de/record/64841
http://dx.doi.org/10.1088/0031-8949/2013/T156/014077.
142. Tahir, M.N., et al., Silicatein conjugation inside nanoconfined geometries through immobilized $NTA–Ni_{(ii)}$ chelates. Chemical communications, 2013. 49(22): p. 2210 DOI: 10.1039/c3cc38605h. http://repository.gsi.de/record/65694
http://dx.doi.org/10.1039/c3cc38605h.
143. Tahir, N.A., et al., Prospects of warm dense matter research at HiRadMat facility at CERN using 440 MeV SPS proton beam. High energy density physics, 2013. 9(2): p. 269 - 276 DOI: 10.1016/j.hedp.2012.12.010. http://repository.gsi.de/record/65427
http://dx.doi.org/10.1016/j.hedp.2012.12.010.
144. Tahir, N.A., et al., Ion Beam Driven High Energy Density Physics Studies at FAIR at Darmstadt: The HEDgeHOB Collaboration. Contributions to plasma physics, 2013. 53(4-5): p. 292 - 299 DOI: 10.1002/ctpp.201200112. http://repository.gsi.de/record/65425
http://dx.doi.org/10.1002/ctpp.201200112.
145. Tashenov, S., et al., Observation of the spin–orbit interaction in bremsstrahlung. Physica scripta, 2013. T156: p. 014071 DOI: 10.1088/0031-8949/2013/T156/014071. http://repository.gsi.de/record/54891
http://dx.doi.org/10.1088/0031-8949/2013/T156/014071.
146. Tashenov, S., et al., Bremsstrahlung polarization correlations and their application for polarimetry of electron beams. Physical review / A, 2013. 87(2): p. 022707 DOI: 10.1103/PhysRevA.87.022707. http://repository.gsi.de/record/51857
http://dx.doi.org/10.1103/PhysRevA.87.022707.
147. Tauschwitz, A., et al., 2D radiation-hydrodynamics modeling of laser-plasma targets for ion stopping measurements. High energy density physics, 2013. 9: p. 158–166 DOI: 10.1016/j.hedp.2012.12.004. http://repository.gsi.de/record/65418
http://dx.doi.org/10.1016/j.hedp.2012.12.004.
148. Tkachenko, L., et al., Development of Wide-Aperture Quadrupole Magnets for Plasma Experiments in the FAIR Project. IEEE transactions on applied superconductivity, 2013. 23(3): p. 4000204 - 4000204 DOI: 10.1109/TASC.2012.2229333. http://repository.gsi.de/record/48357
http://dx.doi.org/10.1109/TASC.2012.2229333.
149. Tol, J., et al., Anomalous Phases in Cavity-Free 240 GHz Pulsed ENDOR Spectra of 1.44 GeV Xe-Irradiated LiF. Applied magnetic resonance, 2013. 44(1-2): p. 117 - 132 DOI: 10.1007/s00723-012-0407-9. http://repository.gsi.de/record/49573
http://dx.doi.org/10.1007/s00723-012-0407-9.
150. Toulemonde, M., et al., Reply to “Comment on ‘Dense and nanometric electronic excitations induced by swift heavy ions in an ionic $CaF_2$ crystal: Evidence for two thresholds of damage creation’ ”. Physical review / B, 2013. 87(5): p. 056102 DOI: 10.1103/PhysRevB.87.056102. http://repository.gsi.de/record/65684
http://dx.doi.org/10.1103/PhysRevB.87.056102.
151. Ulmer, S., et al., A cryogenic detection system at 28.9MHZ for the non-destructive observation of a single proton at low particle energy. Nuclear instruments & methods in physics research / A, 2013. 705: p. 55 - 60 DOI: 10.1016/j.nima.2012.12.071. http://repository.gsi.de/record/51877
http://dx.doi.org/10.1016/j.nima.2012.12.071.
152. Vergunova, G.A., et al., Mathematical modeling of gas-dynamic and radiative processes in experiments with the use of laser and heavy-ion beams. Plasma physics reports, 2013. 39(9): p. 755 - 762 DOI: 10.1134/S1063780X13090080. http://repository.gsi.de/record/65493
http://dx.doi.org/10.1134/S1063780X13090080.
153. Vogel, M., et al., Switchable magnetic bottles and field gradients for particle traps. Applied physics / B, 2013. B(1-2): p. 1 DOI: 10.1007/s00340-013-5707-8. http://repository.gsi.de/record/64860
http://dx.doi.org/10.1007/s00340-013-5707-8.
154. Vogel, M. and W. Quint, Aspects of fundamental physics in precision spectroscopy of highly charged ions in Penning traps. Annalen der Physik, 2013. 525(7): p. 505 - 513 DOI: 10.1002/andp.201300032. http://repository.gsi.de/record/64843
http://dx.doi.org/10.1002/andp.201300032.
155. von Lindenfels, D., et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Physical review / A, 2013. 87(2): p. 023412 DOI: 10.1103/PhysRevA.87.023412. http://repository.gsi.de/record/51878
http://dx.doi.org/10.1103/PhysRevA.87.023412.
156. Wagner, A., et al., g Factor of Lithiumlike Silicon $^{28}Si^{11+}$. Physical review letters, 2013. 110(3): p. 033003 DOI: 10.1103/PhysRevLett.110.033003. http://repository.gsi.de/record/51885
http://dx.doi.org/10.1103/PhysRevLett.110.033003.
157. Wen, W., et al., Preparations for laser cooling of relativistic heavy-ion beams at the CSRe. Physica scripta, 2013. T156: p. 014090 DOI: 10.1088/0031-8949/2013/T156/014090. http://repository.gsi.de/record/54922
http://dx.doi.org/10.1088/0031-8949/2013/T156/014090.
158. Wen, W.Q., et al., Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR. Nuclear instruments & methods in physics research / A, 2013. 711: p. 90 - 95 DOI: 10.1016/j.nima.2013.01.058. http://repository.gsi.de/record/51886
http://dx.doi.org/10.1016/j.nima.2013.01.058.
159. Wenz, A.N., et al., From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, 2013. 342(6157): p. 457 - 460 DOI: 10.1126/science.1240516. http://repository.gsi.de/record/64643
http://dx.doi.org/10.1126/science.1240516.
160. Wienholtz, F., et al., Masses of exotic calcium isotopes pin down nuclear forces. Nature <London>, 2013. 498(7454): p. 346 - 349 DOI: 10.1038/nature12226. http://repository.gsi.de/record/64580
http://dx.doi.org/10.1038/nature12226.
161. Winters, D.F.A., et al., A beamline for x-ray laser spectroscopy at the experimental storage ring at GSI. Physica scripta, 2013. T156: p. 014089 DOI: 10.1088/0031-8949/2013/T156/014089. http://repository.gsi.de/record/54905
http://dx.doi.org/10.1088/0031-8949/2013/T156/014089.
162. Wolf, R.N., et al., ISOLTRAP's multi-reflection time-of-flight mass separator/spectrometer. International journal of mass spectrometry, 2013. 349-350: p. 123 - 133 DOI: 10.1016/j.ijms.2013.03.020. http://repository.gsi.de/record/64575
http://dx.doi.org/10.1016/j.ijms.2013.03.020.
163. Yamaki, T., et al., Ion-track membranes of fluoropolymers: Toward controlling the pore size and shape. Nuclear instruments & methods in physics research / B, 2013. 314: p. 77 - 81 DOI: 10.1016/j.nimb.2013.05.028. http://repository.gsi.de/record/65678
http://dx.doi.org/10.1016/j.nimb.2013.05.028.
164. Yan, X.L., et al., Mass measurement of $^{45}Cr$ and its impact on the Ca-Sc cycle in y-ray bursts. The @astrophysical journal / 2, 2013. 766(1): p. L8 - DOI: 10.1088/2041-8205/766/1/L8. http://repository.gsi.de/record/51887
http://dx.doi.org/10.1088/2041-8205/766/1/L8.
165. Yerokhin, V.A., et al., Bremsstrahlung of polarized positrons scattered off atoms. Physica scripta, 2013. T156: p. 014072 DOI: 10.1088/0031-8949/2013/T156/014072. http://repository.gsi.de/record/65811
http://dx.doi.org/10.1088/0031-8949/2013/T156/014072.
166. Yeung, M., et al., Beaming of High-Order Harmonics Generated from Laser-Plasma Interactions. Physical review letters, 2013. 110(16): p. 165002 DOI: 10.1103/PhysRevLett.110.165002. http://repository.gsi.de/record/65861
http://dx.doi.org/10.1103/PhysRevLett.110.165002.
167. Yeung, M., et al., Near-monochromatic high-harmonic radiation from relativistic laser–plasma interactions with blazed grating surfaces. New journal of physics, 2013. 15(2): p. 025042 DOI: 10.1088/1367-2630/15/2/025042. http://repository.gsi.de/record/65855
http://dx.doi.org/10.1088/1367-2630/15/2/025042.
168. Yordanov, D.T., et al., Spins, Electromagnetic Moments, and Isomers of $^{107-129}Cd$. Physical review letters, 2013. 110(19): p. 192501 DOI: 10.1103/PhysRevLett.110.192501. http://repository.gsi.de/record/51888
http://dx.doi.org/10.1103/PhysRevLett.110.192501.
169. Zastrau, U., et al., Characterization of strongly-bent HAPG crystals for von-Hámos x-ray spectrographs. Journal of Instrumentation, 2013. 8(10): p. P10006 - P10006 DOI: 10.1088/1748-0221/8/10/P10006. http://repository.gsi.de/record/65867
http://dx.doi.org/10.1088/1748-0221/8/10/P10006.
170. Zhang, Y.H., et al., Test of IMME in fp shell via direct mass measurements of $T_z=- 3/2$ nuclides. Journal of physics / Conference Series, 2013. 420: p. 012054 - DOI: 10.1088/1742-6596/420/1/012054. http://repository.gsi.de/record/51889
http://dx.doi.org/10.1088/1742-6596/420/1/012054.
171. Zürch, M., C. Kern, and C. Spielmann, XUV coherent diffraction imaging in reflection geometry with low numerical aperture. Optics express, 2013. 21(18): p. 21131 DOI: 10.1364/OE.21.021131. http://repository.gsi.de/record/65870
http://dx.doi.org/10.1364/OE.21.021131.
2014
1. Afra, B., et al., Annealing behaviour of ion tracks in olivine, apatite and britholite. Nuclear instruments & methods in physics research / B, 2014. 326: p. 126 - 130 DOI: 10.1016/j.nimb.2013.10.072. http://repository.gsi.de/record/97568
http://dx.doi.org/10.1016/j.nimb.2013.10.072.
2. Afra, B., et al., Thermal response of nanoscale cylindrical inclusions of amorphous silica embedded in α-quartz. Physical review / B, 2014. 90(22): p. 224108 DOI: 10.1103/PhysRevB.90.224108. http://repository.gsi.de/record/97540
http://dx.doi.org/10.1103/PhysRevB.90.224108.
3. Akram, N., et al., Transmission of slow highly charged ions through rectangular nanocapillaries. Journal of physics / Conference Series, 2014. 488(13): p. 132043 DOI: 10.1088/1742-6596/488/13/132043. http://repository.gsi.de/record/97543
http://dx.doi.org/10.1088/1742-6596/488/13/132043.
4. Ali, M., et al., Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied physics letters, 2014. 104(4): p. 043703 - DOI: 10.1063/1.4863511. http://repository.gsi.de/record/97633
http://dx.doi.org/10.1063/1.4863511.
5. Ali, M., et al., Current rectification by nanoparticle blocking in single cylindrical nanopores. Nanoscale, 2014. 6(18): p. 10740 DOI: 10.1039/C4NR02968B. http://repository.gsi.de/record/97545
http://dx.doi.org/10.1039/C4NR02968B.
6. Amaro, P., et al., Measurement of the angular distribution of Dielectronic Recombination into highly charged Krypton ions. XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013), 2014. 488(6): p. 062030 DOI: 10.1088/1742-6596/488/6/062030. http://repository.gsi.de/record/65338
http://dx.doi.org/10.1088/1742-6596/488/6/062030.
7. Apel, P.Y., et al., Radiation effects of swift heavy ions in polymers: Determination of nanoshapes from electro-conductivity. Nuclear instruments & methods in physics research / B, 2014. 326: p. 158 - 162 DOI: 10.1016/j.nimb.2013.10.089. http://repository.gsi.de/record/97612
http://dx.doi.org/10.1016/j.nimb.2013.10.089.
8. Avnon, A., et al., Quasi one dimensional transport in individual electrospun composite nanofibers. AIP Advances, 2014. 4(1): p. 017110 DOI: 10.1063/1.4862168. http://repository.gsi.de/record/64866
http://dx.doi.org/10.1063/1.4862168.
9. Banaś, D., et al., Monte-Carlo simulations of the radiative recombination of ions with electrons in cold magnetized plasma. Physica scripta, 2014. T161: p. 014001 DOI: 10.1088/0031-8949/2014/T161/014001. http://repository.gsi.de/record/65655
http://dx.doi.org/10.1088/0031-8949/2014/T161/014001.
10. Bernhardt, D., et al., Dielectronic recombination of berylliumlike $Si^{10+}$ ions at the heavy-ion storage ring TSR, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 062012 DOI: 10.1088/1742-6596/488/6/062012. http://repository.gsi.de/record/65346
http://dx.doi.org/10.1088/1742-6596/488/6/062012.
11. Bernhardt, D., et al., Dielectronic recombination of boronlike $Si^{9+}$ ions at the heavy-ion storage ring TSR, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 062011 DOI: 10.1088/1742-6596/488/6/062011. http://repository.gsi.de/record/65339
http://dx.doi.org/10.1088/1742-6596/488/6/062011.
12. Bernhardt, D., et al., Absolute rate coefficients for photorecombination and electron-impact ionization of magnesiumlike iron ions from measurements at a heavy-ion storage ring. Physical review / A, 2014. 90(1): p. 012702 DOI: 10.1103/PhysRevA.90.012702. http://repository.gsi.de/record/66750
http://dx.doi.org/10.1103/PhysRevA.90.012702.
13. Bernhardt, D., et al., Dielectronic recombination of lithiumlike $Xe^{51+}$ ions: Storage ring experiment and theoretical calculations, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, hina. p. 062014 DOI: 10.1088/1742-6596/488/6/062014. http://repository.gsi.de/record/65343
http://dx.doi.org/10.1088/1742-6596/488/6/062014.
14. Bernhardt, D., et al., Dielectronic recombination of berylliumlike $Xe^{50+}$ ions: Measurement and theoretical calculations, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 062013 DOI: 10.1088/1742-6596/488/6/062013. http://repository.gsi.de/record/65345
http://dx.doi.org/10.1088/1742-6596/488/6/062013.
15. Bierschenk, T., et al., Effect of electronic energy loss on ion track formation in amorphous Ge. Nuclear instruments & methods in physics research / B, 2014. 326: p. 113 - 116 DOI: 10.1016/j.nimb.2013.10.048. http://repository.gsi.de/record/97608
http://dx.doi.org/10.1016/j.nimb.2013.10.048.
16. Bissell, M.L., et al., Proton-Neutron Pairing Correlations in the Self-Conjugate Nucleus $^{38}$K Probed via a Direct Measurement of the Isomer Shift. Physical review letters, 2014. 113(5): p. 052502 DOI: 10.1103/PhysRevLett.113.052502. http://repository.gsi.de/record/201128
http://dx.doi.org/10.1103/PhysRevLett.113.052502.
17. Bondarevskaya, A., et al., Method for the production of highly charged ions with polarized nuclei and zero total electron angular momentum. Physical review / A, 2014. 90(6): p. 064701 DOI: 10.1103/PhysRevA.90.064701. http://repository.gsi.de/record/97475
http://dx.doi.org/10.1103/PhysRevA.90.064701.
18. Botermann, B., et al., Test of Time Dilation Using Stored $Li^+$ Ions as Clocks at Relativistic Speed. Physical review letters, 2014. 113(12): p. 120405 DOI: 10.1103/PhysRevLett.113.120405. http://repository.gsi.de/record/83434
http://dx.doi.org/10.1103/PhysRevLett.113.120405.
19. Bret, A., A.R. Piriz, and N.A. Tahir, Imprint reduction in rotating heavy ions beam energy deposition. Nuclear instruments & methods in physics research / A, 2014. 733: p. 200–202 DOI: 10.1016/j.nima.2013.05.069. http://repository.gsi.de/record/65414
http://dx.doi.org/10.1016/j.nima.2013.05.069.
20. Busold, S., et al., Shaping laser accelerated ions for future applications - The LIGHT collaboration. Nuclear instruments & methods in physics research / A, 2014. 740: p. 94–98 DOI: 10.1016/j.nima.2013.10.025. http://repository.gsi.de/record/65416
http://dx.doi.org/10.1016/j.nima.2013.10.025.
21. Busold, S., et al., Image plate characterization and absolute calibration to low kilo-electron-volt electrons. Review of scientific instruments, 2014. 85(11): p. 113306 - DOI: 10.1063/1.4902321. http://repository.gsi.de/record/96071
http://dx.doi.org/10.1063/1.4902321.
22. Busold, S., et al., Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV. Physical review / Special topics / Accelerators and beams, 2014. 17: p. 031302 DOI: 10.1103/PhysRevSTAB.17.031302. http://repository.gsi.de/record/65417
http://dx.doi.org/10.1103/PhysRevSTAB.17.031302.
23. Chen, W., et al., Metal vapor target for precise studies of ion-atom collisions. Review of scientific instruments, 2014. 85(5): p. 053513 DOI: 10.1063/1.4878626. http://repository.gsi.de/record/66547
http://dx.doi.org/10.1063/1.4878626.
24. Costantini, J.-M., et al., [Editorial] EMRS 2013 syposium M. Nuclear instruments & methods in physics research / B, 2014. 327: p. 1 DOI: 10.1016/j.nimb.2014.03.006. http://repository.gsi.de/record/97567
http://dx.doi.org/10.1016/j.nimb.2014.03.006.
25. Dauletbekova, A., et al., F center creation and aggregation in LiF crystals irradiated with $^{14}N, ^{40}Ar$, and $^{84}Kr$ ions. Nuclear instruments & methods in physics research / B, 2014. 326: p. 311 - 313 DOI: 10.1016/j.nimb.2013.09.026. http://repository.gsi.de/record/97615
http://dx.doi.org/10.1016/j.nimb.2013.09.026.
26. Denis-Petit, D., et al., Identification of X-ray spectra in the Na-like to O-like rubidium ions in the range of 3.8–7.3Å. Journal of quantitative spectroscopy & radiative transfer, 2014. 148: p. 70 - 89 DOI: 10.1016/j.jqsrt.2014.06.004. http://repository.gsi.de/record/96766
http://dx.doi.org/10.1016/j.jqsrt.2014.06.004.
27. Depierreux, S., et al., Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping. Nature Communications, 2014. 5: p. 4158 DOI: 10.1038/ncomms5158. http://repository.gsi.de/record/97352
http://dx.doi.org/10.1038/ncomms5158.
28. Deutsch, C., et al., Multiple scattering in electron fluid and energy lossin multi-ionic targets. Nuclear instruments & methods in physics research / A, 2014. 733: p. 39-44 DOI: 10.1016/j.nima.2013.05.097. http://repository.gsi.de/record/65415
http://dx.doi.org/10.1016/j.nima.2013.05.097.
29. Döppner, T., et al., Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility$^{a)}$. Review of scientific instruments, 2014. 85(11): p. 11D617 - DOI: 10.1063/1.4890253. http://repository.gsi.de/record/96588
http://dx.doi.org/10.1063/1.4890253.
30. Faik, S., et al., Creation of a homogeneous plasma column by means of hohlraum radiation for ion-stopping measurements. High energy density physics, 2014. 10: p. 47 - 55 DOI: 10.1016/j.hedp.2013.10.002. http://repository.gsi.de/record/65486
http://dx.doi.org/10.1016/j.hedp.2013.10.002.
31. Florica, C., et al., Field Effect Transistor with Electrodeposited ZnO Nanowire Channel. Electrochimica acta, 2014. 137: p. 290 - 297 DOI: 10.1016/j.electacta.2014.05.124. http://repository.gsi.de/record/97569
http://dx.doi.org/10.1016/j.electacta.2014.05.124.
32. Gao, X., et al., Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe. Nuclear instruments & methods in physics research / A, 2014. 763: p. 53 - 57 DOI: 10.1016/j.nima.2014.05.122. http://repository.gsi.de/record/83451
http://dx.doi.org/10.1016/j.nima.2014.05.122.
33. Granville, S., et al., Cu codoping control over magnetic precipitate formation in ZnCoO nanowires. Applied physics letters, 2014. 105(25): p. 252403 DOI: 10.1063/1.4904987. http://repository.gsi.de/record/97542
http://dx.doi.org/10.1063/1.4904987.
34. Gunst, J., et al., Dominant Secondary Nuclear Photoexcitation with the X-Ray Free-Electron Laser. Physical review letters, 2014. 112(8): p. 082501 DOI: 10.1103/PhysRevLett.112.082501. http://repository.gsi.de/record/64867
http://dx.doi.org/10.1103/PhysRevLett.112.082501.
35. Hahn, M., et al., Electron-ion recombination of $Fe^{12 +}$ forming $Fe^{11 +}$ : labratory measurements and theoretical calculations. The @astrophysical journal / 1, 2014. 788(1): p. 46 -53 DOI: 10.1088/0004-637X/788/1/46. http://repository.gsi.de/record/65699
http://dx.doi.org/10.1088/0004-637X/788/1/46.
36. Hayrapetyan, A.G., et al., Interaction of Relativistic Electron-Vortex Beams with Few-Cycle Laser Pulses. Physical review letters, 2014. 112(13): p. 134801 DOI: 10.1103/PhysRevLett.112.134801. http://repository.gsi.de/record/65688
http://dx.doi.org/10.1103/PhysRevLett.112.134801.
37. Hillenbrand, P.-M., et al., Electron-loss-to-continuum cusp in $U^{88+} +N_2$ collisions. Physical review / A, 2014. 90(4): p. 042713 DOI: 10.1103/PhysRevA.90.042713. http://repository.gsi.de/record/83437
http://dx.doi.org/10.1103/PhysRevA.90.042713.
38. Hillenbrand, P.-M., et al., Radiative-electron-capture-to-continuum cusp in $U^{88+} + N_2$ collisions and the high-energy endpoint of electron-nucleus bremsstrahlung. Physical review / A, 2014. 90(2): p. 022707 DOI: 10.1103/PhysRevA.90.022707. http://repository.gsi.de/record/67065
http://dx.doi.org/10.1103/PhysRevA.90.022707.
39. Hossain, U.H., et al., On-line and post irradiation analysis of swift heavy ion induced modification of PMMA (polymethyl-methacrylate). Nuclear instruments & methods in physics research / B, 2014. 326: p. 135 - 139 DOI: 10.1016/j.nimb.2013.10.074. http://repository.gsi.de/record/97606
http://dx.doi.org/10.1016/j.nimb.2013.10.074.
40. Hossain, U.H., F. Muench, and W. Ensinger, A comparative study on degradation characteristics of fluoropolymers irradiated by high energy heavy ions. RSC Advances, 2014. 4(91): p. 50171 - 50179 DOI: 10.1039/C4RA04635H. http://repository.gsi.de/record/97544
http://dx.doi.org/10.1039/C4RA04635H.
41. Hossain, U.H., T. Seidl, and W. Ensinger, Combined in situ infrared and mass spectrometric analysis of high-energy heavy ion induced degradation of polyvinyl polymers. Polymer chemistry, 2014. 5(3): p. 1001 - 1012 DOI: 10.1039/C3PY01062G. http://repository.gsi.de/record/97630
http://dx.doi.org/10.1039/C3PY01062G.
42. Innes, L.M., et al., Velocity Profiles in Pores with Undulating Opening Diameter and Their Importance for Resistive-Pulse Experiments. Analytical chemistry, 2014. 86(20): p. 10445 - 10453 DOI: 10.1021/ac502997h. http://repository.gsi.de/record/96791
http://dx.doi.org/10.1021/ac502997h.
43. Jagodziński, P., et al., Ray-tracing simulations of spherical Johann diffraction spectrometer for in-beam X-ray experiments. Nuclear instruments & methods in physics research / A, 2014. 753: p. 121 - 130 DOI: 10.1016/j.nima.2014.04.004. http://repository.gsi.de/record/83432
http://dx.doi.org/10.1016/j.nima.2014.04.004.
44. Jahrsetz, T., S. Fritzsche, and A. Surzhykov, Inelastic Raman scattering of light by hydrogenlike ions. Physical review / A, 2014. 89(4): p. 042501 DOI: 10.1103/PhysRevA.89.042501. http://repository.gsi.de/record/65571
http://dx.doi.org/10.1103/PhysRevA.89.042501.
45. Jakubaßa-Amundsen, D., et al., Relativistic theory for radiative forward electron emission in heavy ion-atom encounters. The @European physical journal / D, 2014. 68(12): p. 367 DOI: 10.1140/epjd/e2014-50574-7. http://repository.gsi.de/record/95697
http://dx.doi.org/10.1140/epjd/e2014-50574-7.
46. Jean, C., et al., Direct Observation of Gigahertz Coherent Guided Acoustic Phonons in Free-Standing Single Copper Nanowires. The @journal of physical chemistry letters, 2014. 5(23): p. 4100 - 4104 DOI: 10.1021/jz502170j. http://repository.gsi.de/record/95702
http://dx.doi.org/10.1021/jz502170j.
47. Kantsyrev, A.V., et al., TWAC-ITEP proton microscopy facility. Instruments and experimental techniques, 2014. 57(1): p. 1 - 10 DOI: 10.1134/S0020441214010151. http://repository.gsi.de/record/97347
http://dx.doi.org/10.1134/S0020441214010151.
48. Kozhedub, Y.S., et al., Relativistic calculations of x-ray emission following a $Xe-Bi^{83+}$ collision. Physical review / A, 2014. 90(4): p. 042709 DOI: 10.1103/PhysRevA.90.042709. http://repository.gsi.de/record/96792
http://dx.doi.org/10.1103/PhysRevA.90.042709.
49. Kreim, K., et al., Nuclear charge radii of potassium isotopes beyond. Physics letters / B, 2014. 731: p. 97 - 102 DOI: 10.1016/j.physletb.2014.02.012. http://repository.gsi.de/record/64789
http://dx.doi.org/10.1016/j.physletb.2014.02.012.
50. Kreim, S., et al., Competition between pairing correlations and deformation from the odd-even mass staggering of francium and radium isotopes. Physical review / C, 2014. 90(2): p. 024301 DOI: 10.1103/PhysRevC.90.024301. http://repository.gsi.de/record/67565
http://dx.doi.org/10.1103/PhysRevC.90.024301.
51. Kühl, T., et al., Strong-field physics using lasers and relativistic heavy ions at the high-energy storage ring HESR at FAIR, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 142003 DOI: 10.1088/1742-6596/488/14/142003. http://repository.gsi.de/record/65347
http://dx.doi.org/10.1088/1742-6596/488/14/142003.
52. Kühnel, M., et al., Observation of crystallization slowdown in supercooled parahydrogen and orthodeuterium quantum liquid mixtures. Physical review / B, 2014. 89(18): p. 180201 DOI: 10.1103/PhysRevB.89.180201. http://repository.gsi.de/record/95647
http://dx.doi.org/10.1103/PhysRevB.89.180201.
53. Kuttich, B., et al., Tailored nanochannels of nearly cylindrical geometry analysed by small angle X-ray scattering. Applied physics / A, 2014. 114(2): p. 387 - 392 DOI: 10.1007/s00339-013-8167-4. http://repository.gsi.de/record/97632
http://dx.doi.org/10.1007/s00339-013-8167-4.
54. Lang, M., et al., Swift heavy ion track formation in $Gd_{2}Zr_{2−x}Ti_{x}O_{7}$ pyrochlore: Effect of electronic energy loss. Nuclear instruments & methods in physics research / B, 2014. 336: p. 102 - 115 DOI: 10.1016/j.nimb.2014.06.019. http://repository.gsi.de/record/96806
http://dx.doi.org/10.1016/j.nimb.2014.06.019.
55. Lang, M., et al., Swift heavy ion-induced phase transformation in $Gd_2O_3$. Nuclear instruments & methods in physics research / B, 2014. 326: p. 121 - 125 DOI: 10.1016/j.nimb.2013.10.073. http://repository.gsi.de/record/97605
http://dx.doi.org/10.1016/j.nimb.2013.10.073.
56. Li, K., et al., Developments toward hard X-ray radiography on heavy-ion heated dense plasmas. Laser and particle beams, 2014. 32(04): p. 631 - 637 DOI: 10.1017/S0263034614000652. http://repository.gsi.de/record/95745
http://dx.doi.org/10.1017/S0263034614000652.
57. Li, W., et al., Effect of orientation on ion track formation in apatite and zircon. American mineralogist, 2014. 99(5-6): p. 1127 - 1132 DOI: 10.2138/am.2014.4669. http://repository.gsi.de/record/97631
http://dx.doi.org/10.2138/am.2014.4669.
58. Litvinov, Y., et al., Ilustration of accuracy of presently used nuclear-mass models. Acta physica Polonica / B, 2014. 45(10): p. 1979 - 1991 DOI: 10.5506/APhysPolB.45.1979. http://repository.gsi.de/record/95696
http://dx.doi.org/10.5506/APhysPolB.45.1979.
59. Lochmann, M., et al., Observation of the hyperfine transition in lithium-like bismuth $^{209}Bi^{80+}$ : Towards a test of QED in strong magnetic fields. Physical review / A, 2014. 90(3): p. 030501 DOI: 10.1103/PhysRevA.90.030501. http://repository.gsi.de/record/83435
http://dx.doi.org/10.1103/PhysRevA.90.030501.
60. Marx, B., et al., High precision measurement of undulator polarization in the regime of hard x-rays. Applied physics letters, 2014. 105(2): p. 024103 DOI: 10.1063/1.4890584. http://repository.gsi.de/record/83431
http://dx.doi.org/10.1063/1.4890584.
61. Matula, O., et al., Radiative capture of twisted electrons by bare ions. New journal of physics, 2014. 16(5): p. 053024 DOI: 10.1088/1367-2630/16/5/053024. http://repository.gsi.de/record/65672
http://dx.doi.org/10.1088/1367-2630/16/5/053024.
62. Miletich, R., et al., Static elasticity of cordierite I: Effect of heavy ion irradiation on the compressibility of hydrous cordierite. Physics and chemistry of minerals, 2014. 41(8): p. 579 - 591 DOI: 10.1007/s00269-014-0671-3. http://repository.gsi.de/record/97363
http://dx.doi.org/10.1007/s00269-014-0671-3.
63. Muench, F., et al., Polycarbonate activation for electroless plating by dimethylaminoborane absorption and subsequent nanoparticle deposition. Applied physics / A, 2014. 116(1): p. 287 - 294 DOI: 10.1007/s00339-013-8119-z. http://repository.gsi.de/record/97566
http://dx.doi.org/10.1007/s00339-013-8119-z.
64. Muench, F., et al., Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surface and coatings technology, 2014. 242: p. 100 - 108 DOI: 10.1016/j.surfcoat.2014.01.024. http://repository.gsi.de/record/97613
http://dx.doi.org/10.1016/j.surfcoat.2014.01.024.
65. Muench, F., et al., Hierarchically porous carbon membranes containing designed nanochannel architectures obtained by pyrolysis of ion-track etched polyimide. Materials chemistry and physics, 2014. 148(3): p. 846 - 853 DOI: 10.1016/j.matchemphys.2014.09.001. http://repository.gsi.de/record/95699
http://dx.doi.org/10.1016/j.matchemphys.2014.09.001.
66. Nasir, S., et al., Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS applied materials & interfaces, 2014. 6(15): p. 12486 - 12494 DOI: 10.1021/am502419j. http://repository.gsi.de/record/97549
http://dx.doi.org/10.1021/am502419j.
67. Papuga, J., et al., Shell structure of potassium isotopes deduced from their magnetic moments. Physical review / C, 2014. 90(3): p. 034321 DOI: 10.1103/PhysRevC.90.034321. http://repository.gsi.de/record/96933
http://dx.doi.org/10.1103/PhysRevC.90.034321.
68. Park, S., et al., Swift heavy ion irradiation-induced amorphization of $La_2Ti_2O_7$. Nuclear instruments & methods in physics research / B, 2014. 326: p. 145 - 149 DOI: 10.1016/j.nimb.2013.10.088. http://repository.gsi.de/record/97609
http://dx.doi.org/10.1016/j.nimb.2013.10.088.
69. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Rayleigh-Taylor linear growth at an interface between an elastoplastic solidand a viscous liquid. Physical review / E, 2014. 89(6): p. 063022 DOI: 10.1103/PhysRevE.89.063022. http://repository.gsi.de/record/97335
http://dx.doi.org/10.1103/PhysRevE.89.063022.
70. Prokůpek, J., et al., Development and first experimental tests of Faraday cup array. Review of scientific instruments, 2014. 85(1): p. 013302 DOI: 10.1063/1.4859496. http://repository.gsi.de/record/97356
http://dx.doi.org/10.1063/1.4859496.
71. Quint, W., et al., Magnetic Moment of the Bound Electron, in Fundamental Physics in Particle Traps / Quint, Wolfgang (Editor) ; Berlin, Heidelberg : Springer Berlin Heidelberg, 2014, Chapter 3 ; ISSN: 0081-3869=1615-0430 ; ISBN: 978-3-642-45200-0=978-3-642-45201-7 ; doi:10.1007/978-3-642-45201-7. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 73 - 135 DOI: 10.1007/978-3-642-45201-7_3. http://repository.gsi.de/record/184439
http://dx.doi.org/10.1007/978-3-642-45201-7_3.
72. Ramirez, P., et al., Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem, 2014. 1(4): p. 698 - 705 DOI: 10.1002/celc.201300255. http://repository.gsi.de/record/97565
http://dx.doi.org/10.1002/celc.201300255.
73. Reifarth, R. and Y. Litvinov, Measurements of neutron-induced reactions in inverse kinematics. Physical review / Special topics / Accelerators and beams, 2014. 17(1): p. 014701 DOI: 10.1103/PhysRevSTAB.17.014701. http://repository.gsi.de/record/97797
http://dx.doi.org/10.1103/PhysRevSTAB.17.014701.
74. Rodriguez, M.D., et al., SAXS and TEM investigation of ion tracks in neodymium-doped yttrium aluminium garnet. Nuclear instruments & methods in physics research / B, 2014. 326: p. 150 - 153 DOI: 10.1016/j.nimb.2013.10.076. http://repository.gsi.de/record/97572
http://dx.doi.org/10.1016/j.nimb.2013.10.076.
75. Schauries, D., et al., The shape of ion tracks in natural apatite. Nuclear instruments & methods in physics research / B, 2014. 326: p. 117 - 120 DOI: 10.1016/j.nimb.2013.10.071. http://repository.gsi.de/record/97611
http://dx.doi.org/10.1016/j.nimb.2013.10.071.
76. Scheidl, K.S., et al., Static elasticity of cordierite II: effect of molecular $CO_2$ channel constituents on the compressibility. Physics and chemistry of minerals, 2014. 41(8): p. 617 - 631 DOI: 10.1007/s00269-014-0675-z. http://repository.gsi.de/record/97364
http://dx.doi.org/10.1007/s00269-014-0675-z.
77. Schippers, S., et al., Storage-ring measurement of the hyperfine induced $2s2p ^3P_0 → 2s2 ^1S_0$ transition rate in berylliumlike sulfur, in 10.1088/1742-6596/488/6/062016. 2014, IOP Publ.: Lanzhou, China. p. 062016 DOI: 10.1088/1742-6596/488/6/062016. http://repository.gsi.de/record/65340
http://dx.doi.org/10.1088/1742-6596/488/6/062016.
78. Schmidt, R., et al., First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility. Physics of plasmas, 2014. 21(8): p. 080701 DOI: 10.1063/1.4892960. http://repository.gsi.de/record/97336
http://dx.doi.org/10.1063/1.4892960.
79. Scholz-Marggraf, H.M., et al., Absorption of twisted light by hydrogenlike atoms. Physical review / A, 2014. 90(1): p. 013425 DOI: 10.1103/PhysRevA.90.013425. http://repository.gsi.de/record/67564
http://dx.doi.org/10.1103/PhysRevA.90.013425.
80. Schulze, K.S., et al., Determination of the polarization state of x rays with the help of anomalous transmission. Applied physics letters, 2014. 104(15): p. 151110 DOI: 10.1063/1.4872180. http://repository.gsi.de/record/83430
http://dx.doi.org/10.1063/1.4872180.
81. Schwartz, J., et al., Local formation of nitrogen-vacancy centers in diamond by swift heavy ions. Journal of applied physics, 2014. 116(21): p. 214107 DOI: 10.1063/1.4903075. http://repository.gsi.de/record/97548
http://dx.doi.org/10.1063/1.4903075.
82. Senje, L., et al., Diagnostics for studies of novel laser ion acceleration mechanisms. Review of scientific instruments, 2014. 85(11): p. 113302 DOI: 10.1063/1.4900626. http://repository.gsi.de/record/97360
http://dx.doi.org/10.1063/1.4900626.
83. Sharkov, B. and D. Varentsov, Experiments on extreme states of matter towards HIF at FAIR. Nuclear instruments & methods in physics research / A, 2014. 733: p. 238 - 241 DOI: 10.1016/j.nima.2013.05.061. http://repository.gsi.de/record/97344
http://dx.doi.org/10.1016/j.nima.2013.05.061.
84. Shuai, P., et al., Charge and frequency resolved isochronous mass spectrometry and the mass of $^{51}Co$. Physics letters / B, 2014. 735: p. 327 - 331 DOI: 10.1016/j.physletb.2014.06.046. http://repository.gsi.de/record/67566
http://dx.doi.org/10.1016/j.physletb.2014.06.046.
85. Sivakov, V., et al., Silver nanostructures formation in porous Si/SiO$_2$ matrix. Journal of crystal growth, 2014. 400: p. 21 - 26 DOI: 10.1016/j.jcrysgro.2014.04.024. http://repository.gsi.de/record/97571
http://dx.doi.org/10.1016/j.jcrysgro.2014.04.024.
86. Smorra, C., et al., Towards a high-precision measurement of the antiproton magnetic moment. Hyperfine interactions, 2014. 228(1-3): p. 31 - 36 DOI: 10.1007/s10751-014-1018-7. http://repository.gsi.de/record/98073
http://dx.doi.org/10.1007/s10751-014-1018-7.
87. Sobiczewski, A. and Y. Litvinov, Predictive power of nuclear-mass models. Physical review / C, 2014. 90(1): p. 017302 DOI: 10.1103/PhysRevC.90.017302. http://repository.gsi.de/record/97798
http://dx.doi.org/10.1103/PhysRevC.90.017302.
88. Sobiczewski, A. and Y. Litvinov, Accuracy of theoretical descriptions of nuclear masses. Physical review / C, 2014. 89(2): p. 024311 DOI: 10.1103/PhysRevC.89.024311. http://repository.gsi.de/record/64925
http://dx.doi.org/10.1103/PhysRevC.89.024311.
89. Sorokin, M.V., et al., Modeling of defect accumulation in lithium fluoride crystals under irradiation with swift ions. Nuclear instruments & methods in physics research / B, 2014. 326: p. 307 - 310 DOI: 10.1016/j.nimb.2013.10.033. http://repository.gsi.de/record/97607
http://dx.doi.org/10.1016/j.nimb.2013.10.033.
90. Stöhlker, T., et al., SPARC collaboration: new strategy for storage ring physics at FAIR. Hyperfine interactions, 2014. 227(1-3): p. 45 - 53 DOI: 10.1007/s10751-014-1047-2. http://repository.gsi.de/record/95648
http://dx.doi.org/10.1007/s10751-014-1047-2.
91. Tahir, N.A., et al., Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research. Physical review / E, 2014. 90(6): p. 063112 DOI: 10.1103/PhysRevE.90.063112. http://repository.gsi.de/record/97338
http://dx.doi.org/10.1103/PhysRevE.90.063112.
92. Tahir, N.A., et al., Three-dimensional thermal simulations of thin solid carbonfoils for charge stripping of high current uranium ion beams at a proposed new heavy-ion linac at GSI. Physical review / Special topics / Accelerators and beams, 2014. 17(4): p. 041003 DOI: 10.1103/PhysRevSTAB.17.041003. http://repository.gsi.de/record/83429
http://dx.doi.org/10.1103/PhysRevSTAB.17.041003.
93. Tashenov, S., et al., Electron polarimetry with bremsstrahlung, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 012057 DOI: 10.1088/1742-6596/488/1/012057. http://repository.gsi.de/record/65341
http://dx.doi.org/10.1088/1742-6596/488/1/012057.
94. Tashenov, S., et al., Bremsstrahlung polarization correlations and their application for polarimetry of electron beams. 28th International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC), 2014. 488(4): p. 042021 DOI: 10.1088/1742-6596/488/4/042021. http://repository.gsi.de/record/67073
http://dx.doi.org/10.1088/1742-6596/488/4/042021.
95. Tashenov, S., et al., Observation of Coherence in the Time-Reversed Relativistic Photoelectric Effect. Physical review letters, 2014. 113(11): p. 113001 DOI: 10.1103/PhysRevLett.113.113001. http://repository.gsi.de/record/83428
http://dx.doi.org/10.1103/PhysRevLett.113.113001.
96. Tashenov, S., et al., First observation of correlated photons emitted by heavy highly charged ions in the process of radiative recombination, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 082023 - DOI: 10.1088/1742-6596/488/8/082023. http://repository.gsi.de/record/65348
http://dx.doi.org/10.1088/1742-6596/488/8/082023.
97. Tiedemann, D., et al., A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI. Nuclear instruments & methods in physics research / A, 2014. 764: p. 387 - 393 DOI: 10.1016/j.nima.2014.08.017. http://repository.gsi.de/record/83427
http://dx.doi.org/10.1016/j.nima.2014.08.017.
98. Tracy, C.L., et al., Defect accumulation in $ThO_2$ irradiated with swift heavy ions. Nuclear instruments & methods in physics research / B, 2014. 326: p. 169 - 173 DOI: 10.1016/j.nimb.2013.08.070. http://repository.gsi.de/record/65809
http://dx.doi.org/10.1016/j.nimb.2013.08.070.
99. Tu, X.L., et al., A survey of Coulomb displacement energies and questions on the anomalous behavior in the upper fp-shell. Journal of physics / G, 2014. 41(2): p. 025104 - DOI: 10.1088/0954-3899/41/2/025104. http://repository.gsi.de/record/64678
http://dx.doi.org/10.1088/0954-3899/41/2/025104.
100. Ulmer, S., et al., The magnetic moments of the proton and the antiproton, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 012033 DOI: 10.1088/1742-6596/488/1/012033. http://repository.gsi.de/record/65342
http://dx.doi.org/10.1088/1742-6596/488/1/012033.
101. Velasco, A.E., et al., Flow and evaporation in single micrometer and nanometer scale pipes. Applied physics letters, 2014. 105(3): p. 033101 DOI: 10.1063/1.4890985. http://repository.gsi.de/record/97541
http://dx.doi.org/10.1063/1.4890985.
102. Vogel, M., et al., Resistive and sympathetic cooling of highly-charged-ion clouds in a Penning trap. Physical review / A, 2014. 90(4): p. 043412 DOI: 10.1103/PhysRevA.90.043412. http://repository.gsi.de/record/83492
http://dx.doi.org/10.1103/PhysRevA.90.043412.
103. Wagner, F., et al., Pre-plasma formation in experiments using petawatt lasers. Optics express, 2014. 22(24): p. 29505 - DOI: 10.1364/OE.22.029505. http://repository.gsi.de/record/95703
http://dx.doi.org/10.1364/OE.22.029505.
104. Wagner, F., et al., Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification. Applied physics / B, 2014. 116(2): p. 429 - 435 DOI: 10.1007/s00340-013-5714-9. http://repository.gsi.de/record/97361
http://dx.doi.org/10.1007/s00340-013-5714-9.
105. Wen, W., et al., Laser cooling of stored relativistic ion beams with large momentum spreads using a laser system with a wide scanning range, in XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). 2014, IOP Publ.: Lanzhou, China. p. 122005 - DOI: 10.1088/1742-6596/488/12/122005. http://repository.gsi.de/record/65344
http://dx.doi.org/10.1088/1742-6596/488/12/122005.
106. White, T.G., et al., Electron-Ion Equilibration in Ultrafast Heated Graphite. Physical review letters, 2014. 112(14): p. 145005 DOI: 10.1103/PhysRevLett.112.145005. http://repository.gsi.de/record/97358
http://dx.doi.org/10.1103/PhysRevLett.112.145005.
107. Zabels, R., et al., MeV–GeV ion induced dislocation loops in LiF crystals. Nuclear instruments & methods in physics research / B, 2014. 326: p. 318 - 321 DOI: 10.1016/j.nimb.2013.10.043. http://repository.gsi.de/record/97616
http://dx.doi.org/10.1016/j.nimb.2013.10.043.
108. Zaytsev, V.A., et al., Parity-nonconservation effect in the dielectronic recombination of polarized electrons with heavy He-like ions. Physical review / A, 2014. 89(3): p. 032703 DOI: 10.1103/PhysRevA.89.032703. http://repository.gsi.de/record/83426
http://dx.doi.org/10.1103/PhysRevA.89.032703.
109. Zhang, H.Q., et al., Transmission of highly charged ions through nanocapillaries of noncircular cross sections. Journal of physics / Conference Series, 2014. 488(1): p. 012035 DOI: 10.1088/1742-6596/488/1/012035. http://repository.gsi.de/record/97547
http://dx.doi.org/10.1088/1742-6596/488/1/012035.
110. Zhang, W., et al., Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe. Nuclear instruments & methods in physics research / A, 2014. 756: p. 1 - 5 DOI: 10.1016/j.nima.2014.04.051. http://repository.gsi.de/record/66751
http://dx.doi.org/10.1016/j.nima.2014.04.051.
111. Zhang, W., et al., A timing detector with pulsed high-voltage power supply for mass measurements at CSRe. Nuclear instruments & methods in physics research / A, 2014. 755: p. 38 - 43 DOI: 10.1016/j.nima.2014.04.031. http://repository.gsi.de/record/66546
http://dx.doi.org/10.1016/j.nima.2014.04.031.
112. Zhao, H.Y., et al., High-brilliance double-stage soft x-ray laser pumped by multiple pulses applied in grazing incidence. Journal of physics / Conference Series, 2014. 488(14): p. 142004 DOI: 10.1088/1742-6596/488/14/142004. http://repository.gsi.de/record/97357
http://dx.doi.org/10.1088/1742-6596/488/14/142004.
113. Zubova, N.A., et al., Relativistic calculations of the isotope shifts in highly charged Li-like ions. Physical review / A, 2014. 90(6): p. 062512 DOI: 10.1103/PhysRevA.90.062512. http://repository.gsi.de/record/97789
http://dx.doi.org/10.1103/PhysRevA.90.062512.
2015
1. Akber, A., et al., Increased isomeric lifetime of hydrogen-like $^{192m}Os$. Physical review / C, 2015. 91(3): p. 031301 DOI: 10.1103/PhysRevC.91.031301. http://repository.gsi.de/record/97791
http://dx.doi.org/10.1103/PhysRevC.91.031301.
2. Alencar, I., et al., In situ Resonant Ultrasound Spectroscopy during irradiation of solids with relativistic heavy ions. Acta materialia, 2015. 89: p. 60 - 72 DOI: 10.1016/j.actamat.2015.01.031. http://repository.gsi.de/record/180929
http://dx.doi.org/10.1016/j.actamat.2015.01.031.
3. Ali, M., et al., Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores. ACS applied materials & interfaces, 2015. 7(35): p. 19541 - 19545 DOI: 10.1021/acsami.5b06015. http://repository.gsi.de/record/184687
http://dx.doi.org/10.1021/acsami.5b06015.
4. Ali, M., S. Nasir, and W. Ensinger, Bioconjugation-induced ionic current rectification in aptamer-modified single cylindrical nanopores. Chemical communications, 2015. 51(16): p. 3454 - 3457 DOI: 10.1039/C5CC00257E. http://repository.gsi.de/record/161263
http://dx.doi.org/10.1039/C5CC00257E.
5. Andelkovic, Z., et al., Status of deceleration and laser spectroscopy of highly charged ions at HITRAP. Hyperfine interactions, 2015. 234: p. 1-8 DOI: 10.1007/s10751-015-1199-8. http://repository.gsi.de/record/184417
http://dx.doi.org/10.1007/s10751-015-1199-8.
6. Andelkovic, Z., et al., Beamline for low-energy transport of highly charged ions at HITRAP. Nuclear instruments & methods, 2015. 795: p. 109 - 114 DOI: 10.1016/j.nima.2015.05.055. http://repository.gsi.de/record/184422
http://dx.doi.org/10.1016/j.nima.2015.05.055.
7. Andersson, J., et al., Triple ionization of atomic Cd involving 4 p$^{−1}$ and 4 s$^{−1}$ inner-shell holes. Physical review / A, 2015. 92(2): p. 023414 DOI: 10.1103/PhysRevA.92.023414. http://repository.gsi.de/record/186849
http://dx.doi.org/10.1103/PhysRevA.92.023414.
8. Andreev, N.E., et al., Interaction of annular-focused laser beams with solid targets. Laser and particle beams, 2015. 33(03): p. 541 - 550 DOI: 10.1017/S0263034615000580. http://repository.gsi.de/record/180921
http://dx.doi.org/10.1017/S0263034615000580.
9. Artemyev, A.N. and A. Surzhykov, Quantum Electrodynamical Corrections to Energy Levels of Diatomic Quasimolecules. Physical review letters, 2015. 114(24): p. 243004 DOI: 10.1103/PhysRevLett.114.243004. http://repository.gsi.de/record/186850
http://dx.doi.org/10.1103/PhysRevLett.114.243004.
10. Atanasov, D., et al., Precision Mass Measurements of $^{129 – 131}$Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process. Physical review letters, 2015. 115(23): p. 232501 DOI: 10.1103/PhysRevLett.115.232501. http://repository.gsi.de/record/184247
http://dx.doi.org/10.1103/PhysRevLett.115.232501.
11. Atanasov, D., et al., Between atomic and nuclear physics: radioactive decays of highly-charged ions. Journal of physics / B, 2015. 48(14): p. 144024 DOI: 10.1088/0953-4075/48/14/144024. http://repository.gsi.de/record/109239
http://dx.doi.org/10.1088/0953-4075/48/14/144024.
12. Aurand, B., et al., Reduction of X-ray generation in high-intensity laser ion acceleration. Applied physics / B, 2015. 118(2): p. 247 - 251 DOI: 10.1007/s00340-014-5979-7. http://repository.gsi.de/record/180918
http://dx.doi.org/10.1007/s00340-014-5979-7.
13. Banaś, D., et al., Subshell-selective x-ray studies of radiative recombination of U$^{92+}$ ions with electrons for very low relative energies. Physical review / A, 2015. 92(3): p. 032710 DOI: 10.1103/PhysRevA.92.032710. http://repository.gsi.de/record/183605
http://dx.doi.org/10.1103/PhysRevA.92.032710.
14. Belikov, R.S., et al., Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation. Quantum electronics, 2015. 45(5): p. 421 - 425 DOI: 10.1070/QE2015v045n05ABEH015759. http://repository.gsi.de/record/180926
http://dx.doi.org/10.1070/QE2015v045n05ABEH015759.
15. Bender, M., et al., Material-related issues at high-power and high-energy ion beam facilities, in FAIRNESS 2014. 2015, IOP Publ.: Vietri sul Mare, Italy. p. 012039 DOI: 10.1088/1742-6596/599/1/012039. http://repository.gsi.de/record/180938
http://dx.doi.org/10.1088/1742-6596/599/1/012039.
16. Bernhardt, D., et al., Simultaneous measurement of photorecombination and electron-impact ionization of Fe$^{14+}$ ions. Journal of physics / Conference Series, 2015. 635(5): p. 052002 DOI: 10.1088/1742-6596/635/5/052002. http://repository.gsi.de/record/184280
http://dx.doi.org/10.1088/1742-6596/635/5/052002.
17. Bernhardt, D., et al., Electron-ion collision spectroscopy: Lithium-like xenon ions. Physical review / A, 2015. 91(1): p. 012710 DOI: 10.1103/PhysRevA.91.012710. http://repository.gsi.de/record/109238
http://dx.doi.org/10.1103/PhysRevA.91.012710.
18. Bernhardt, D., et al., Spectroscopy of berylliumlike xenon ions using dielectronic recombination. Journal of physics / B, 2015. 48(14): p. 144008 DOI: 10.1088/0953-4075/48/14/144008. http://repository.gsi.de/record/109237
http://dx.doi.org/10.1088/0953-4075/48/14/144008.
19. Bernhardt, H., et al., Engineering crystalline Au nanoparticles of anisotropic shape in epitaxially grown high-index SrTiO$_3$. Journal of materials science, 2015. 50(16): p. 5562 - 5570 DOI: 10.1007/s10853-015-9103-0. http://repository.gsi.de/record/186851
http://dx.doi.org/10.1007/s10853-015-9103-0.
20. Beyer, H., et al., Crystal optics for precision x-ray spectroscopy on highly charged ions—conception and proof. Journal of physics / B, 2015. 48(14): p. 144010 DOI: 10.1088/0953-4075/48/14/144010. http://repository.gsi.de/record/109236
http://dx.doi.org/10.1088/0953-4075/48/14/144010.
21. Bierbach, J., et al., Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape. Optics express, 2015. 23(9): p. 12321 DOI: 10.1364/OE.23.012321. http://repository.gsi.de/record/186889
http://dx.doi.org/10.1364/OE.23.012321.
22. Bieroń, J., et al., Ab initio MCDHF calculations of electron–nucleus interactionsen. Physica scripta, 2015. 90(5): p. 054011 DOI: 10.1088/0031-8949/90/5/054011. http://repository.gsi.de/record/186878
http://dx.doi.org/10.1088/0031-8949/90/5/054011.
23. Bin, J.H., et al., Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas. Physical review letters, 2015. 115(6): p. 064801 DOI: 10.1103/PhysRevLett.115.064801. http://repository.gsi.de/record/186912
http://dx.doi.org/10.1103/PhysRevLett.115.064801.
24. Blumenhagen, K.-H., et al., Elastic scattering of linearly polarized hard x-rays. Journal of physics / Conference Series, 2015. 635(9): p. 092072 DOI: 10.1088/1742-6596/635/9/092072. http://repository.gsi.de/record/184275
http://dx.doi.org/10.1088/1742-6596/635/9/092072.
25. Blumenhagen, K.-H., et al., Characterization of a double-sided Si(Li) strip Compton polarimeter. Journal of physics / Conference Series, 2015. 583: p. 012043 - DOI: 10.1088/1742-6596/583/1/012043. http://repository.gsi.de/record/96941
http://dx.doi.org/10.1088/1742-6596/583/1/012043.
26. Blumenhagen, K.-H., et al., Identification and reduction of unwanted stray radiation using an energy- and position-sensitive Compton polarimeter. Physica scripta, 2015. T166: p. 014032 DOI: 10.1088/0031-8949/2015/T166/014032. http://repository.gsi.de/record/183254
http://dx.doi.org/10.1088/0031-8949/2015/T166/014032.
27. Botermann, B., et al., Erratum: Test of Time Dilation Using Stored $Li^+$ Ions as Clocks at Relativistic Speed [Phys. Rev. Lett. 113 , 120405 (2014)]. Physical review letters, 2015. 114(23): p. 239902 DOI: 10.1103/PhysRevLett.114.239902. http://repository.gsi.de/record/109139
http://dx.doi.org/10.1103/PhysRevLett.114.239902.
28. Brabetz, C., et al., Laser-driven ion acceleration with hollow laser beams. Physics of plasmas, 2015. 22(1): p. 013105 - DOI: 10.1063/1.4905638. http://repository.gsi.de/record/97474
http://dx.doi.org/10.1063/1.4905638.
29. Brandau, C., et al., Storage-ring experiments on dielectronic recombination at the interface of atomic and nuclear physics. Physica scripta, 2015. T166: p. 014022 DOI: 10.1088/0031-8949/2015/T166/014022. http://repository.gsi.de/record/183243
http://dx.doi.org/10.1088/0031-8949/2015/T166/014022.
30. Brandau, C., et al., High-resolution dielectronic recombination experiments at the upcoming CRYRING@ESR facility. Journal of physics / Conference Series, 2015. 635(2): p. 022084 DOI: 10.1088/1742-6596/635/2/022084. http://repository.gsi.de/record/184281
http://dx.doi.org/10.1088/1742-6596/635/2/022084.
31. Braun, J., et al., Search for inhomogeneous phases in fermionic models. Physical review / D, 2015. 91(11): p. 116006 DOI: 10.1103/PhysRevD.91.116006. http://repository.gsi.de/record/186853
http://dx.doi.org/10.1103/PhysRevD.91.116006.
32. Breitkopf, S., et al., Stack and dump: Peak-power scaling by coherent pulse addition in passive cavities. European physical journal special topics, 2015. 224(13): p. 2573 - 2577 DOI: 10.1140/epjst/e2015-02567-7. http://repository.gsi.de/record/186886
http://dx.doi.org/10.1140/epjst/e2015-02567-7.
33. Breuer, L., et al., Time-of-flight secondary neutral & ion mass spectrometry using swift heavy ions. Nuclear instruments & methods in physics research / B, 2015. 365: p. 482 - 489 DOI: 10.1016/j.nimb.2015.07.117. http://repository.gsi.de/record/183627
http://dx.doi.org/10.1016/j.nimb.2015.07.117.
34. Burkart, F., et al., Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN. Journal of applied physics, 2015. 118(5): p. 055902 DOI: 10.1063/1.4927721. http://repository.gsi.de/record/180871
http://dx.doi.org/10.1063/1.4927721.
35. Burr, L., et al., Surface Enrichment in Au–Ag Alloy Nanowires and Investigation of the Dealloying Process. The @journal of physical chemistry <Washington, DC> / C, 2015. 119(36): p. 20949 - 20956 DOI: 10.1021/acs.jpcc.5b05596. http://repository.gsi.de/record/184675
http://dx.doi.org/10.1021/acs.jpcc.5b05596.
36. Busold, S., et al., Towards highest peak intensities for ultra-short MeV-range ion bunches. Scientific reports, 2015. 5: p. 12459 DOI: 10.1038/srep12459. http://repository.gsi.de/record/180861
http://dx.doi.org/10.1038/srep12459.
37. Cassinelli, M., et al., Structural and compositional characterization of Bi$_{1−x}$Sb$_x$ nanowire arrays grown by pulsed deposition to improve growth uniformity. Nuclear instruments & methods in physics research / B, 2015. 365: p. 668 - 674 DOI: 10.1016/j.nimb.2015.07.107. http://repository.gsi.de/record/183624
http://dx.doi.org/10.1016/j.nimb.2015.07.107.
38. Cayzac, W., et al., Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities. Physical review / E, 2015. 92(5): p. 053109 DOI: 10.1103/PhysRevE.92.053109. http://repository.gsi.de/record/183580
http://dx.doi.org/10.1103/PhysRevE.92.053109.
39. Chen, R.J., et al., Simulations of the isochronous mass spectrometry at the HIRFL-CSR. Physica scripta, 2015. T166: p. 014044 DOI: 10.1088/0031-8949/2015/T166/014044. http://repository.gsi.de/record/181065
http://dx.doi.org/10.1088/0031-8949/2015/T166/014044.
40. Chen, X., et al., Report on a computer-controlled automatic test platform for precision RF cavity characterizations. Physica scripta, 2015. T166: p. 014061 DOI: 10.1088/0031-8949/2015/T166/014061. http://repository.gsi.de/record/183602
http://dx.doi.org/10.1088/0031-8949/2015/T166/014061.
41. de Vries, O., et al., Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization. Optics express, 2015. 23(15): p. 19586 DOI: 10.1364/OE.23.019586. http://repository.gsi.de/record/186913
http://dx.doi.org/10.1364/OE.23.019586.
42. Dedera, S., et al., On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions. Nuclear instruments & methods in physics research / B, 2015. 365: p. 564 - 568 DOI: 10.1016/j.nimb.2015.09.079. http://repository.gsi.de/record/183621
http://dx.doi.org/10.1016/j.nimb.2015.09.079.
43. Doherty, D.T., et al., Nuclear transfer reaction measurements at the ESR—for the investigation of the astrophysical $^{15}O(α,γ )^{19}Ne$ reaction. Physica scripta, 2015. T166: p. 014007 DOI: 10.1088/0031-8949/2015/T166/014007. http://repository.gsi.de/record/181071
http://dx.doi.org/10.1088/0031-8949/2015/T166/014007.
44. Doria, D., et al., Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions. Review of scientific instruments, 2015. 86(12): p. 123302 DOI: 10.1063/1.4935582. http://repository.gsi.de/record/186915
http://dx.doi.org/10.1063/1.4935582.
45. Ecker, B., et al., Double-stage soft x-ray laser pumped by multiple pulses applied in grazing incidence. Journal of physics / B, 2015. 48(14): p. 144009 DOI: 10.1088/0953-4075/48/14/144009. http://repository.gsi.de/record/180953
http://dx.doi.org/10.1088/0953-4075/48/14/144009.
46. Eidam, T., et al., Divided-pulse amplification for terawatt-class fiber lasers. European physical journal special topics, 2015. 224(13): p. 2567 - 2571 DOI: 10.1140/epjst/e2015-02566-8. http://repository.gsi.de/record/186918
http://dx.doi.org/10.1140/epjst/e2015-02566-8.
47. Eliav, E., S. Fritzsche, and U. Kaldor, Electronic structure theory of the superheavy elements. Nuclear physics <Amsterdam> / A, 2015. 944: p. 518 - 550 DOI: 10.1016/j.nuclphysa.2015.06.017. http://repository.gsi.de/record/205473
http://dx.doi.org/10.1016/j.nuclphysa.2015.06.017.
48. Fedorov, F.S., et al., The gas multisensor chip fabricated by direct electrochemical deposition of tin oxide. 2015 IEEE Sensors, 2015. 0: p. 978-1-4799-8203-5 DOI: 10.1109/ICSENS.2015.7370406. http://repository.gsi.de/record/201229
http://dx.doi.org/10.1109/ICSENS.2015.7370406.
49. Fritzsche, S., et al., Photoexcitations of many-electron atoms and ions by twisted light. Journal of physics / Conference Series, 2015. 635(9): p. 092029 DOI: 10.1088/1742-6596/635/9/092029. http://repository.gsi.de/record/184292
http://dx.doi.org/10.1088/1742-6596/635/9/092029.
50. Fritzsche, S., A. Surzhykov, and A. Volotka, Relativistically prolonged lifetime of the 2s2p $^3P_0$ level of zeronuclear-spin beryllium-like ions. New journal of physics, 2015. 17(10): p. 103009 DOI: 10.1088/1367-2630/17/10/103009. http://repository.gsi.de/record/161449
http://dx.doi.org/10.1088/1367-2630/17/10/103009.
51. Frömmgen, N., et al., Collinear laser spectroscopy of atomic cadmium. The @European physical journal / D, 2015. 69(6): p. 164 DOI: 10.1140/epjd/e2015-60219-0. http://repository.gsi.de/record/186887
http://dx.doi.org/10.1140/epjd/e2015-60219-0.
52. Gaida, C., et al., Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 μm wavelength. Optics letters, 2015. 40(22): p. 5160 DOI: 10.1364/OL.40.005160. http://repository.gsi.de/record/186890
http://dx.doi.org/10.1364/OL.40.005160.
53. Gaida, C., et al., Coherent combination of two Tm-doped fiber amplifiers. Optics letters, 2015. 40(10): p. 2301 - DOI: 10.1364/OL.40.002301. http://repository.gsi.de/record/186854
http://dx.doi.org/10.1364/OL.40.002301.
54. Gaßner, T. and H. Beyer, Spatial characterization of the internal gas target at the ESR for the FOCAL experiment. Physica scripta, 2015. T166: p. 014052 DOI: 10.1088/0031-8949/2015/T166/014052. http://repository.gsi.de/record/183266
http://dx.doi.org/10.1088/0031-8949/2015/T166/014052.
55. Gebhardt, M., et al., Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber. Optics letters, 2015. 40(12): p. 2770 - DOI: 10.1364/OL.40.002770. http://repository.gsi.de/record/186855
http://dx.doi.org/10.1364/OL.40.002770.
56. Gebhardt, M., et al., Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses. Optics express, 2015. 23(11): p. 13776 DOI: 10.1364/OE.23.013776. http://repository.gsi.de/record/186891
http://dx.doi.org/10.1364/OE.23.013776.
57. Geithner, R., et al., A squid-based beam current monitor for FAIR/CRYRING. Physica scripta, 2015. T166: p. 014057 DOI: 10.1088/0031-8949/2015/T166/014057. http://repository.gsi.de/record/183600
http://dx.doi.org/10.1088/0031-8949/2015/T166/014057.
58. Gies, H., F. Karbstein, and N. Seegert, Quantum reflection of photons off spatio-temporal electromagnetic field inhomogeneities. New journal of physics, 2015. 17(4): p. 043060 DOI: 10.1088/1367-2630/17/4/043060. http://repository.gsi.de/record/186856
http://dx.doi.org/10.1088/1367-2630/17/4/043060.
59. Glorius, J., Y. Litvinov, and R. Reifarth, Neutron-induced reaction studies using stored ions. Physica scripta, 2015. T166: p. 014008 DOI: 10.1088/0031-8949/2015/T166/014008. http://repository.gsi.de/record/181062
http://dx.doi.org/10.1088/0031-8949/2015/T166/014008.
60. Gomez, V., et al., Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific reports, 2015. 5: p. 9501 DOI: 10.1038/srep09501. http://repository.gsi.de/record/180925
http://dx.doi.org/10.1038/srep09501.
61. Gomez, V., et al., Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Applied physics letters, 2015. 106(7): p. 073701 DOI: 10.1063/1.4909532. http://repository.gsi.de/record/161259
http://dx.doi.org/10.1063/1.4909532.
62. Gorda, O., et al., Ion-optical design of CRYRING@ESR. Physica scripta, 2015. T166: p. 014043 DOI: 10.1088/0031-8949/2015/T166/014043. http://repository.gsi.de/record/183244
http://dx.doi.org/10.1088/0031-8949/2015/T166/014043.
63. Gorges, C., et al., Isotope shift of $^{40,42,44,48}$Ca in the 4s $^2S_{1/2}$ → 4p $^2P_{3/2}$ transition. Journal of physics / B, 2015. 48(24): p. 245008 - DOI: 10.1088/0953-4075/48/24/245008. http://repository.gsi.de/record/180945
http://dx.doi.org/10.1088/0953-4075/48/24/245008.
64. Guerra, M., et al., Electron impact ionization cross-sections for few-electron uranium ions. Journal of physics / B, 2015. 48(14): p. 144027 DOI: 10.1088/0953-4075/48/14/144027. http://repository.gsi.de/record/109138
http://dx.doi.org/10.1088/0953-4075/48/14/144027.
65. Gumberidze, A., T. Stöhlker, and Y. Litvinov, Atomic physics at the future facility for antiproton and ion research: status report 2014. Physica scripta, 2015. T166: p. 014076 DOI: 10.1088/0031-8949/2015/T166/014076. http://repository.gsi.de/record/183250
http://dx.doi.org/10.1088/0031-8949/2015/T166/014076.
66. Gumberidze, A., et al., Electron- and proton-impact excitation of He-like uranium. Journal of physics / Conference Series, 2015. 635(2): p. 022063 DOI: 10.1088/1742-6596/635/2/022063. http://repository.gsi.de/record/184261
http://dx.doi.org/10.1088/1742-6596/635/2/022063.
67. Gumberidze, A., et al., Ground-state excitation of heavy highly-charged ions. Journal of physics / B, 2015. 48(14): p. 144006 DOI: 10.1088/0953-4075/48/14/144006. http://repository.gsi.de/record/109137
http://dx.doi.org/10.1088/0953-4075/48/14/144006.
68. Hädrich, S., et al., Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light, 2015. 4(8): p. e320 - DOI: 10.1038/lsa.2015.93. http://repository.gsi.de/record/186857
http://dx.doi.org/10.1038/lsa.2015.93.
69. Hagmann, S., et al., The magnetic toroidal sector: a broad-band electron-positron pair spectrometer. Journal of physics / Conference Series, 2015. 635(2): p. 022046 DOI: 10.1088/1742-6596/635/2/022046. http://repository.gsi.de/record/184263
http://dx.doi.org/10.1088/1742-6596/635/2/022046.
70. Hahn, M., et al., Storage ring cross section measurements for electron impact ionization of Fe$^{7+}$. The @astrophysical journal / 1, 2015. 813(1): p. 16 DOI: 10.1088/0004-637X/813/1/16. http://repository.gsi.de/record/161450
http://dx.doi.org/10.1088/0004-637X/813/1/16.
71. Hahn, T., et al., Broadband XUV polarimetry of high harmonics from plasma surfaces using multiple Fresnel reflections. Applied physics / B, 2015. 118(2): p. 241 - 245 DOI: 10.1007/s00340-014-5977-9. http://repository.gsi.de/record/180964
http://dx.doi.org/10.1007/s00340-014-5977-9.
72. Heeg, K.P., et al., Tunable Subluminal Propagation of Narrow-band X-Ray Pulses. Physical review letters, 2015. 114(20): p. 203601 DOI: 10.1103/PhysRevLett.114.203601. http://repository.gsi.de/record/186921
http://dx.doi.org/10.1103/PhysRevLett.114.203601.
73. Hengstler, D., et al., Towards FAIR: first measurements of metallic magnetic calorimeters for high-resolution x-ray spectroscopy at GSI. Physica scripta, 2015. T166: p. 014054 DOI: 10.1088/0031-8949/2015/T166/014054. http://repository.gsi.de/record/183264
http://dx.doi.org/10.1088/0031-8949/2015/T166/014054.
74. Herfurth, F., et al., The HITRAP facility for slow highly charged ions. Physica scripta, 2015. T166: p. 014065 DOI: 10.1088/0031-8949/2015/T166/014065. http://repository.gsi.de/record/181059
http://dx.doi.org/10.1088/0031-8949/2015/T166/014065.
75. Hillenbrand, P.-M., et al., Electron-capture-to-continuum cusp in U$^{88+}$+N$_2$ collisions. Physical review / A, 2015. 91(2): p. 022705 DOI: 10.1103/PhysRevA.91.022705. http://repository.gsi.de/record/183597
http://dx.doi.org/10.1103/PhysRevA.91.022705.
76. Hillenbrand, P.-M., et al., Electron emission spectra of U$^{28+}$ -ions colliding with gaseous targets. Journal of physics / Conference Series, 2015. 635(2): p. 022049 DOI: 10.1088/1742-6596/635/2/022049. http://repository.gsi.de/record/184273
http://dx.doi.org/10.1088/1742-6596/635/2/022049.
77. Hillenbrand, P.-M., et al., Forward-angle electron spectroscopy in heavy-ion atom collisions studied at the ESR. Journal of physics / Conference Series, 2015. 635(2): p. 022005 DOI: 10.1088/1742-6596/635/2/022005. http://repository.gsi.de/record/184262
http://dx.doi.org/10.1088/1742-6596/635/2/022005.
78. Hillenbrand, P.-M., et al., Forward-angle electron spectroscopy in heavy-ion atom collisions studied at the ESR. Journal of physics / Conference Series, 2015. 635(1): p. 012011 DOI: 10.1088/1742-6596/635/1/012011. http://repository.gsi.de/record/183270
http://dx.doi.org/10.1088/1742-6596/635/1/012011.
79. Hillenbrand, P.-M., et al., Experimental concepts of positron spectroscopy at HESR. Physica scripta, 2015. T166: p. 014026 DOI: 10.1088/0031-8949/2015/T166/014026. http://repository.gsi.de/record/181067
http://dx.doi.org/10.1088/0031-8949/2015/T166/014026.
80. Hoffmann, A., M. Zürch, and C. Spielmann, Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber. Applied Sciences, 2015. 5(4): p. 1310 - 1322 DOI: 10.3390/app5041310. http://repository.gsi.de/record/186859
http://dx.doi.org/10.3390/app5041310.
81. Holmberg, J., et al., QED corrections to radiative recombination and radiative decay of heavy hydrogenlike ions. Physical review / A, 2015. 92(4): p. 042510 DOI: 10.1103/PhysRevA.92.042510. http://repository.gsi.de/record/186860
http://dx.doi.org/10.1103/PhysRevA.92.042510.
82. Höppner, H., et al., An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers. New journal of physics, 2015. 17(5): p. 053020 DOI: 10.1088/1367-2630/17/5/053020. http://repository.gsi.de/record/186892
http://dx.doi.org/10.1088/1367-2630/17/5/053020.
83. Hornung, M., et al., Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast. Applied Sciences, 2015. 5(4): p. 1970 - 1979 DOI: 10.3390/app5041970. http://repository.gsi.de/record/186893
http://dx.doi.org/10.3390/app5041970.
84. Horst, F., et al., A TLD-based ten channel system for the spectrometry of bremsstrahlung generated by laser-matter interaction. Nuclear instruments & methods in physics research / A, 2015. 782: p. 69 - 76 DOI: 10.1016/j.nima.2015.02.010. http://repository.gsi.de/record/180870
http://dx.doi.org/10.1016/j.nima.2015.02.010.
85. Hubert, C., et al., Swift heavy ion-induced radiation damage in isotropic graphite studied by micro-indentation and in-situ electrical resistivity. Nuclear instruments & methods in physics research / B, 2015. 365: p. 509 - 514 DOI: 10.1016/j.nimb.2015.08.056. http://repository.gsi.de/record/183626
http://dx.doi.org/10.1016/j.nimb.2015.08.056.
86. Jauregui, C., et al., Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening. Optics express, 2015. 23(16): p. 20203 DOI: 10.1364/OE.23.020203. http://repository.gsi.de/record/186894
http://dx.doi.org/10.1364/OE.23.020203.
87. João, C.P., et al., A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping. Applied physics / B, 2015. 118(3): p. 401 - 407 DOI: 10.1007/s00340-015-6003-6. http://repository.gsi.de/record/180878
http://dx.doi.org/10.1007/s00340-015-6003-6.
88. Jordan, E., et al., High-Resolution Spectroscopy on the Laser-Cooling Candidate La$^−$. Physical review letters, 2015. 115(11): p. 113001 DOI: 10.1103/PhysRevLett.115.113001. http://repository.gsi.de/record/186879
http://dx.doi.org/10.1103/PhysRevLett.115.113001.
89. Jörg, H., et al., Linear polarization of x-ray transitions due to dielectronic recombination in highly charged ions. Physical review / A, 2015. 91(4): p. 042705 DOI: 10.1103/PhysRevA.91.042705. http://repository.gsi.de/record/186861
http://dx.doi.org/10.1103/PhysRevA.91.042705.
90. Karbstein, F., et al., Vacuum birefringence in strong inhomogeneous electromagnetic fields. Physical review / D, 2015. 92(7): p. 071301 DOI: 10.1103/PhysRevD.92.071301. http://repository.gsi.de/record/186862
http://dx.doi.org/10.1103/PhysRevD.92.071301.
91. Karbstein, F. and R. Shaisultanov, Stimulated photon emission from the vacuum. Physical review / D, 2015. 91(11): p. 113002 DOI: 10.1103/PhysRevD.91.113002. http://repository.gsi.de/record/186864
http://dx.doi.org/10.1103/PhysRevD.91.113002.
92. Karbstein, F. and R. Shaisultanov, Photon propagation in slowly varying inhomogeneous electromagnetic fields. Physical review / D, 2015. 91(8): p. 085027 DOI: 10.1103/PhysRevD.91.085027. http://repository.gsi.de/record/186863
http://dx.doi.org/10.1103/PhysRevD.91.085027.
93. Katayama, T., et al., Antiproton chain of the FAIR storage rings. Physica scripta, 2015. T166: p. 014073 DOI: 10.1088/0031-8949/2015/T166/014073. http://repository.gsi.de/record/181068
http://dx.doi.org/10.1088/0031-8949/2015/T166/014073.
94. Kern, C., M. Zürch, and C. Spielmann, Limitations of Extreme Nonlinear Ultrafast Nanophotonics. Nanophotonics, 2015. 4(1): p. 303–323 DOI: 10.1515/nanoph-2015-00013. http://repository.gsi.de/record/186865
http://dx.doi.org/10.1515/nanoph-2015-00013.
95. Kienel, M., et al., Multidimensional coherent pulse addition of ultrashort laser pulses. Optics letters, 2015. 40(4): p. Vol. 40, Issue 4, pp. 522-525 (2015) DOI: 10.1364/OL.40.000522. http://repository.gsi.de/record/186866
http://dx.doi.org/10.1364/OL.40.000522.
96. Köhler, F., et al., The electron mass from g -factor measurements on hydrogen-like carbon $^{12}C^{5+}$. Journal of physics / B, 2015. 48(14): p. 144032 DOI: 10.1088/0953-4075/48/14/144032. http://repository.gsi.de/record/109136
http://dx.doi.org/10.1088/0953-4075/48/14/144032.
97. Körner, J., et al., Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System. Applied Sciences, 2015. 5(4): p. 1790 - 1802 DOI: 10.3390/app5041790. http://repository.gsi.de/record/186895
http://dx.doi.org/10.3390/app5041790.
98. Kovalenko, O., et al., Investigation of the heavy-ion mode in the FAIR High Energy Storage Ring. Physica scripta, 2015. T166: p. 014042 DOI: 10.1088/0031-8949/2015/T166/014042. http://repository.gsi.de/record/183248
http://dx.doi.org/10.1088/0031-8949/2015/T166/014042.
99. Kovtun, O., et al., Strong effect of the electron spin on bremsstrahlung observed in the relativistic regime. Journal of physics / Conference Series, 2015. 635(5): p. 052089 DOI: 10.1088/1742-6596/635/5/052089. http://repository.gsi.de/record/184293
http://dx.doi.org/10.1088/1742-6596/635/5/052089.
100. Kovtun, O., et al., Spin-orbit interaction in bremsstrahlung and its effect on the electron motion in a strong Coulomb field. Physical review / A, 2015. 92(6): p. 062707 DOI: 10.1103/PhysRevA.92.062707. http://repository.gsi.de/record/184260
http://dx.doi.org/10.1103/PhysRevA.92.062707.
101. Kozhedub, Y.S., et al., Non-perturbative relativistic calculations of the K-shell-vacancy production in Xe-Xe$^{54+}$ collisions. Journal of physics / Conference Series, 2015. 599: p. 012037 DOI: 10.1088/1742-6596/599/1/012037. http://repository.gsi.de/record/109135
http://dx.doi.org/10.1088/1742-6596/599/1/012037.
102. Krasyuk, I.K., et al., Investigation of the spall strength of graphite using nano- and picosecond laser pulses, in ELBRUS 2015. 2015, IOP Publ.: Kabardino-Balkaria, Russia. p. 012002 DOI: 10.1088/1742-6596/653/1/012002. http://repository.gsi.de/record/184701
http://dx.doi.org/10.1088/1742-6596/653/1/012002.
103. Kraus, D., et al., The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering. Physics of plasmas, 2015. 22(5): p. 056307 DOI: 10.1063/1.4920943. http://repository.gsi.de/record/108763
http://dx.doi.org/10.1063/1.4920943.
104. Krauser, J., et al., Electrical conduction of ion tracks in tetrahedral amorphous carbon: temperature, field and doping dependence and comparison with matrix data. New journal of physics, 2015. 17(12): p. 123009 DOI: 10.1088/1367-2630/17/12/123009. http://repository.gsi.de/record/184683
http://dx.doi.org/10.1088/1367-2630/17/12/123009.
105. Krings, T., et al., Multi-element readout of structured HPGe-detectors for high-resolution x-ray spectroscopy using CUBE-preamplifiers. Journal of Instrumentation, 2015. 10(02): p. C02043 - C02043 DOI: 10.1088/1748-0221/10/02/C02043. http://repository.gsi.de/record/97425
http://dx.doi.org/10.1088/1748-0221/10/02/C02043.
106. Kuhn, S., et al., Effect of hydroxyl concentration on Yb$^{3+}$ luminescence properties in a peraluminous lithium-alumino-silicate glass. Optical materials express, 2015. 5(2): p. 430 - DOI: 10.1364/OME.5.000430. http://repository.gsi.de/record/186896
http://dx.doi.org/10.1364/OME.5.000430.
107. Kuhn, S., et al., Photo-acoustic spectroscopy and quantum efficiency of Yb$^{3+}$ doped alumino silicate glasses. Journal of applied physics, 2015. 118(10): p. 103104 DOI: 10.1063/1.4929819. http://repository.gsi.de/record/186897
http://dx.doi.org/10.1063/1.4929819.
108. Kumar, S., et al., Design of mechanically compensated Penning trap for the study of ions in extreme laser field. XXIX International Conference on Photonic, Electronic, and Atomic Collisions, 2015. 635(9): p. 092070 DOI: 10.1088/1742-6596/635/9/092070. http://repository.gsi.de/record/184421
http://dx.doi.org/10.1088/1742-6596/635/9/092070.
109. Kunitski, M., et al., Observation of the Efimov state of the helium trimer. Science, 2015. 348(6234): p. 551 - 555 DOI: 10.1126/science.aaa5601. http://repository.gsi.de/record/109134
http://dx.doi.org/10.1126/science.aaa5601.
110. Kupka, K., et al., Intense heavy ion beam-induced temperature effects in carbon-based stripper foils. Journal of radioanalytical and nuclear chemistry, 2015. 305(3): p. 875 - 882 DOI: 10.1007/s10967-015-4057-x. http://repository.gsi.de/record/180942
http://dx.doi.org/10.1007/s10967-015-4057-x.
111. Landgraf, B., et al., Generation of multi-millijoule red-shifted pulses for seeding stimulated Raman backscattering amplifiers. Optics express, 2015. 23(6): p. 7400 - DOI: 10.1364/OE.23.007400. http://repository.gsi.de/record/180880
http://dx.doi.org/10.1364/OE.23.007400.
112. Lang, M., et al., Advances in understanding of swift heavy-ion tracks in complex ceramics. Current opinion in solid state & materials science, 2015. 19(1): p. 39 - 48 DOI: 10.1016/j.cossms.2014.10.002. http://repository.gsi.de/record/180928
http://dx.doi.org/10.1016/j.cossms.2014.10.002.
113. Lang, M., et al., Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques. Journal of materials research, 2015. 30(09): p. 1366 - 1379 DOI: 10.1557/jmr.2015.6. http://repository.gsi.de/record/180931
http://dx.doi.org/10.1557/jmr.2015.6.
114. Lestinsky, M., et al., CRYRING@ESR: present status and future research. Physica scripta, 2015. T166: p. 014075 DOI: 10.1088/0031-8949/2015/T166/014075. http://repository.gsi.de/record/180986
http://dx.doi.org/10.1088/0031-8949/2015/T166/014075.
115. Liu, W., et al., Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses. Optics letters, 2015. 40(2): p. 151 - DOI: 10.1364/OL.40.000151. http://repository.gsi.de/record/186880
http://dx.doi.org/10.1364/OL.40.000151.
116. Loisch, G., et al., Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping. Physics of plasmas, 2015. 22(5): p. 053502 DOI: 10.1063/1.4919851. http://repository.gsi.de/record/108762
http://dx.doi.org/10.1063/1.4919851.
117. Maiorova, A.V., et al., Quantum correlations in the radiative recombination into excited state of highly charged heavy ions. Journal of physics / Conference Series, 2015. 635(9): p. 092075 DOI: 10.1088/1742-6596/635/9/092075. http://repository.gsi.de/record/184289
http://dx.doi.org/10.1088/1742-6596/635/9/092075.
118. Maltsev, I.A., et al., Electron-positron pair creation in low-energy collisions of heavy bare nuclei. Physical review / A, 2015. 91(3): p. 032708 DOI: 10.1103/PhysRevA.91.032708. http://repository.gsi.de/record/109133
http://dx.doi.org/10.1103/PhysRevA.91.032708.
119. Manschwetus, B., et al., Self-Probing Spectroscopy of the SF 6 Molecule: A Study of the Spectral Amplitude and Phase of the High Harmonic Emission. The @journal of physical chemistry <Washington, DC> / A, 2015. 119(23): p. 6111 - 6122 DOI: 10.1021/acs.jpca.5b00446. http://repository.gsi.de/record/186867
http://dx.doi.org/10.1021/acs.jpca.5b00446.
120. Marx-Glowna, B., et al., Influence of higher harmonics of the undulator in X-ray polarimetry and crystal monochromator design. Journal of synchrotron radiation, 2015. 22(5): p. 1151 - 1154 DOI: 10.1107/S1600577515011510. http://repository.gsi.de/record/186703
http://dx.doi.org/10.1107/S1600577515011510.
121. Matei, E., et al., Electrical properties of single CdTe nanowires. Beilstein journal of nanotechnology, 2015. 6: p. 444 - 450 DOI: 10.3762/bjnano.6.45. http://repository.gsi.de/record/180933
http://dx.doi.org/10.3762/bjnano.6.45.
122. Mejía, C., et al., Radiolysis and sputtering of carbon dioxide ice induced by swift Ti, Ni, and Xe ions. Nuclear instruments & methods in physics research / B, 2015. 365: p. 477 - 481 DOI: 10.1016/j.nimb.2015.09.039. http://repository.gsi.de/record/183620
http://dx.doi.org/10.1016/j.nimb.2015.09.039.
123. Mirfayzi, S.R., et al., Calibration of time of flight detectors using laser-driven neutron source. Review of scientific instruments, 2015. 86(7): p. 073308 DOI: 10.1063/1.4923088. http://repository.gsi.de/record/186917
http://dx.doi.org/10.1063/1.4923088.
124. Muench, F., et al., Self-Supporting Metal Nanotube Networks Obtained by Highly Conformal Electroless Plating. ChemPlusChem, 2015. 80(9): p. 1448 - 1456 DOI: 10.1002/cplu.201500073. http://repository.gsi.de/record/184685
http://dx.doi.org/10.1002/cplu.201500073.
125. Müller, R.A., et al., Effect of bound-state dressing in laser-assisted radiative recombination. Physical review / A, 2015. 92(5): p. 053426 DOI: 10.1103/PhysRevA.92.053426. http://repository.gsi.de/record/184259
http://dx.doi.org/10.1103/PhysRevA.92.053426.
126. Nguyen, Q.H., et al., Transport properties of track-etched membranes having variable effective pore-lengths. Nanotechnology, 2015. 26(48): p. 485502 DOI: 10.1088/0957-4484/26/48/485502. http://repository.gsi.de/record/184686
http://dx.doi.org/10.1088/0957-4484/26/48/485502.
127. Nörtershäuser, W. and R. Sánchez, Laser spectroscopy at storage rings. Physica scripta, 2015. T166: p. 014020 DOI: 10.1088/0031-8949/2015/T166/014020. http://repository.gsi.de/record/183262
http://dx.doi.org/10.1088/0031-8949/2015/T166/014020.
128. Ortner, A., et al., A novel double hohlraum target to create a moderately coupled plasma for ion stopping experiments. Nuclear instruments & methods in physics research / B, 2015. 343: p. 123 - 131 DOI: 10.1016/j.nimb.2014.11.047. http://repository.gsi.de/record/97471
http://dx.doi.org/10.1016/j.nimb.2014.11.047.
129. Ortner, A., et al., Role of charge transfer in heavy-ion-beam–plasma interactions at intermediate energies. Physical review / E, 2015. 91(2): p. 023104 DOI: 10.1103/PhysRevE.91.023104. http://repository.gsi.de/record/108764
http://dx.doi.org/10.1103/PhysRevE.91.023104.
130. Otto, A., et al., Lifting shell structures in the dynamically assisted Schwinger effect in periodic fields. Physics letters / B, 2015. 740: p. 335 - 340 DOI: 10.1016/j.physletb.2014.12.010. http://repository.gsi.de/record/186868
http://dx.doi.org/10.1016/j.physletb.2014.12.010.
131. Otto, A., et al., Dynamical Schwinger process in a bifrequent electric field of finite duration: Survey on amplification. Physical review / D, 2015. 91(10): p. 105018 DOI: 10.1103/PhysRevD.91.105018. http://repository.gsi.de/record/186869
http://dx.doi.org/10.1103/PhysRevD.91.105018.
132. Palomares, R.I., et al., In situ defect annealing of swift heavy ion irradiated CeO$_2$ and ThO$_2$ using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell. Journal of applied crystallography, 2015. 48(3): p. 711 - 717 DOI: 10.1107/S160057671500477X. http://repository.gsi.de/record/180932
http://dx.doi.org/10.1107/S160057671500477X.
133. Papaléo, R.M., et al., Confinement Effects of Ion Tracks in Ultrathin Polymer Films. Physical review letters, 2015. 114(11): p. 118302 DOI: 10.1103/PhysRevLett.114.118302. http://repository.gsi.de/record/180943
http://dx.doi.org/10.1103/PhysRevLett.114.118302.
134. Park, S., et al., Response of Gd$_2$Ti$_2$O$_7$ and La$_2$Ti$_2$O$_7$ to swift-heavy ion irradiation and annealing. Acta materialia, 2015. 93: p. 1 - 11 DOI: 10.1016/j.actamat.2015.04.010. http://repository.gsi.de/record/180940
http://dx.doi.org/10.1016/j.actamat.2015.04.010.
135. Pellemoine, F., et al., Study on structural recovery of graphite irradiated with swift heavy ions at high temperature. Nuclear instruments & methods in physics research / B, 2015. 365: p. 522 - 524 DOI: 10.1016/j.nimb.2015.09.007. http://repository.gsi.de/record/183623
http://dx.doi.org/10.1016/j.nimb.2015.09.007.
136. Pérez-Mitta, G., et al., Host–guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes. Nanoscale, 2015. 7(38): p. 15594 - 15598 DOI: 10.1039/C5NR04645A. http://repository.gsi.de/record/184677
http://dx.doi.org/10.1039/C5NR04645A.
137. Pérez-Mitta, G., et al., Nanofluidic Diodes with Dynamic Rectification Properties Stemming from Reversible Electrochemical Conversions in Conducting Polymers. Journal of the American Chemical Society, 2015. 137(49): p. 15382 - 15385 DOI: 10.1021/jacs.5b10692. http://repository.gsi.de/record/184679
http://dx.doi.org/10.1021/jacs.5b10692.
138. Pérez-Mitta, G., et al., Polydopamine Meets Solid-State Nanopores: A Bioinspired Integrative Surface Chemistry Approach To Tailor the Functional Properties of Nanofluidic Diodes. Journal of the American Chemical Society, 2015. 137(18): p. 6011 - 6017 DOI: 10.1021/jacs.5b01638. http://repository.gsi.de/record/180936
http://dx.doi.org/10.1021/jacs.5b01638.
139. Peshkov, A.A., S. Fritzsche, and A. Surzhykov, Ionization of the hydrogen molecular ion H$_2^+$ by twisted light. Journal of physics / Conference Series, 2015. 635(11): p. 112021 DOI: 10.1088/1742-6596/635/11/112021. http://repository.gsi.de/record/184286
http://dx.doi.org/10.1088/1742-6596/635/11/112021.
140. Peshkov, A.A., S. Fritzsche, and A. Surzhykov, Ionization of H$^+_2$ molecular ions by twisted Bessel light. Physical review / A, 2015. 92(4): p. 043415 DOI: 10.1103/PhysRevA.92.043415. http://repository.gsi.de/record/161451
http://dx.doi.org/10.1103/PhysRevA.92.043415.
141. Petridis, N., et al., Prototype internal target design for storage ring experiments. Physica scripta, 2015. T166: p. 014051 DOI: 10.1088/0031-8949/2015/T166/014051. http://repository.gsi.de/record/183591
http://dx.doi.org/10.1088/0031-8949/2015/T166/014051.
142. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration. Physical review / E, 2015. 91(3): p. 033007 DOI: 10.1103/PhysRevE.91.033007. http://repository.gsi.de/record/180873
http://dx.doi.org/10.1103/PhysRevE.91.033007.
143. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Analytic model for the dynamic Z-pinch. Physics of plasmas, 2015. 22(6): p. 062704 DOI: 10.1063/1.4922078. http://repository.gsi.de/record/180872
http://dx.doi.org/10.1063/1.4922078.
144. Qiu, Y., et al., Pores with Longitudinal Irregularities Distinguish Objects by Shape. ACS nano, 2015. 9(4): p. 4390 - 4397 DOI: 10.1021/acsnano.5b00877. http://repository.gsi.de/record/180935
http://dx.doi.org/10.1021/acsnano.5b00877.
145. Ramirez, P., et al., Energy conversion from external fluctuating signals based on asymmetric nanopores. Nano energy, 2015. 16: p. 375 - 382 DOI: 10.1016/j.nanoen.2015.07.013. http://repository.gsi.de/record/161260
http://dx.doi.org/10.1016/j.nanoen.2015.07.013.
146. Ringleb, S., et al., HILITE—ions in intense photon fields. Physica scripta, 2015. T166: p. 014067 DOI: 10.1088/0031-8949/2015/T166/014067. http://repository.gsi.de/record/183240
http://dx.doi.org/10.1088/0031-8949/2015/T166/014067.
147. Rosmej, O., et al., The hydrodynamic and radiative properties of low-density foams heated by x-rays. Plasma physics and controlled fusion, 2015. 57(9): p. 094001 DOI: 10.1088/0741-3335/57/9/094001. http://repository.gsi.de/record/180954
http://dx.doi.org/10.1088/0741-3335/57/9/094001.
148. Rothard, H., D. Severin, and C. Trautmann, [Editorial] Swift Heavy Ions in Matter. Nuclear instruments & methods in physics research / B, 2015. 365: p. 435 - 436 DOI: 10.1016/j.nimb.2015.11.013. http://repository.gsi.de/record/184673
http://dx.doi.org/10.1016/j.nimb.2015.11.013.
149. Rothhardt, J., et al., Prospects for laser spectroscopy of highly charged ions with high-harmonic XUV and soft x-ray sources. Physica scripta, 2015. T166: p. 014030 DOI: 10.1088/0031-8949/2015/T166/014030. http://repository.gsi.de/record/183590
http://dx.doi.org/10.1088/0031-8949/2015/T166/014030.
150. Rusby, D.R., et al., Measurement of the angle, temperature and flux of fast electrons emitted from intense laser–solid interactions. Journal of plasma physics, 2015. 81(05): p. 475810505 DOI: 10.1017/S0022377815000835. http://repository.gsi.de/record/180874
http://dx.doi.org/10.1017/S0022377815000835.
151. Sánchez, R., et al., Hyperfine transition in $^{209}$Bi$^{80+}$ — one step forward. Physica scripta, 2015. T166: p. 014021 DOI: 10.1088/0031-8949/2015/T166/014021. http://repository.gsi.de/record/183245
http://dx.doi.org/10.1088/0031-8949/2015/T166/014021.
152. Sanjari, M.S., et al., Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings. Physica scripta, 2015. T166: p. 014060 DOI: 10.1088/0031-8949/2015/T166/014060. http://repository.gsi.de/record/183261
http://dx.doi.org/10.1088/0031-8949/2015/T166/014060.
153. Sarri, G., et al., Overview of laser-driven generation of electron–positron beams. Journal of plasma physics, 2015. 81(04): p. 455810401 DOI: 10.1017/S002237781500046X. http://repository.gsi.de/record/186870
http://dx.doi.org/10.1017/S002237781500046X.
154. Sävert, A., et al., Direct Observation of the Injection Dynamics of a Laser Wakefield Accelerator Using Few-Femtosecond Shadowgraphy. Physical review letters, 2015. 115(5): p. 055002 DOI: 10.1103/PhysRevLett.115.055002. http://repository.gsi.de/record/186907
http://dx.doi.org/10.1103/PhysRevLett.115.055002.
155. Sayler, A.M., et al., Accurate determination of absolute carrier-envelope phase dependence using photo-ionization. Optics letters, 2015. 40(13): p. 3137 - DOI: 10.1364/OL.40.003137. http://repository.gsi.de/record/186908
http://dx.doi.org/10.1364/OL.40.003137.
156. Schauries, D., et al., Ion track annealing in quartz investigated by small angle X-ray scattering, in 19th International Conference on Ion Beam Modification of Materials. 2015, Elsevier: Leuven, Belgium. p. 380 - 383 DOI: 10.1016/j.nimb.2015.07.081. http://repository.gsi.de/record/183612
http://dx.doi.org/10.1016/j.nimb.2015.07.081.
157. Schauries, D., et al., Orientation dependent annealing kinetics of ion tracks in c-SiO$_2$. Journal of applied physics, 2015. 118(22): p. 224305 DOI: 10.1063/1.4936601. http://repository.gsi.de/record/184681
http://dx.doi.org/10.1063/1.4936601.
158. Schauries, D., et al., Size characterization of ion tracks in PET and PTFE using SAXS. Nuclear instruments & methods in physics research / B, 2015. 365: p. 573 - 577 DOI: 10.1016/j.nimb.2015.08.071. http://repository.gsi.de/record/183622
http://dx.doi.org/10.1016/j.nimb.2015.08.071.
159. Schippers, S., et al., Stepwise contraction of the n f Rydberg shells in the 3d photoionization of multiply-charged xenon ions. Journal of physics / B, 2015. 48(14): p. 144003 - DOI: 10.1088/0953-4075/48/14/144003. http://repository.gsi.de/record/186881
http://dx.doi.org/10.1088/0953-4075/48/14/144003.
160. Schippers, S., A. Surzhykov, and S. Fritzsche, 9th International Conference on Atomic and Molecular Data and Their Applications. Physica scripta, 2015. 90(5): p. 050201 DOI: 10.1088/0031-8949/90/5/050201. http://repository.gsi.de/record/186882
http://dx.doi.org/10.1088/0031-8949/90/5/050201.
161. Schlüter, A., et al., Phase field modelling of dynamic thermal fracture in the context of irradiation damage. Continuum mechanics and thermodynamics, 2015. 1: p. 1-12 DOI: 10.1007/s00161-015-0456-z. http://repository.gsi.de/record/184699
http://dx.doi.org/10.1007/s00161-015-0456-z.
162. Schmidt, P., O. Boine-Frankenheim, and P. Mulser, Laser induced focusing for over-dense plasma beams. Physics of plasmas, 2015. 22(9): p. 093120 - DOI: 10.1063/1.4931739. http://repository.gsi.de/record/184640
http://dx.doi.org/10.1063/1.4931739
<Go to ISI>://WOS:000362571800109.
163. Schmidt, S., et al., Non-destructive single-pass low-noise detection of ions in a beamline. Review of scientific instruments, 2015. 86(11): p. 113302 DOI: 10.1063/1.4935551. http://repository.gsi.de/record/184419
http://dx.doi.org/10.1063/1.4935551.
164. Schnell, M., et al., Characterization and application of hard x-ray betatron radiation generated by relativistic electrons from a laser-wakefield accelerator. Journal of plasma physics, 2015. 81(04): p. 475810401 DOI: 10.1017/S0022377815000379. http://repository.gsi.de/record/186909
http://dx.doi.org/10.1017/S0022377815000379.
165. Schubert, I., et al., Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes. Beilstein journal of nanotechnology, 2015. 6: p. 1272 - 1280 DOI: 10.3762/bjnano.6.131. http://repository.gsi.de/record/180937
http://dx.doi.org/10.3762/bjnano.6.131.
166. Schubert, I., et al., STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers. Nanoscale, 2015. 7(11): p. 4935 - 4941 DOI: 10.1039/C4NR06578F. http://repository.gsi.de/record/180941
http://dx.doi.org/10.1039/C4NR06578F.
167. Scott, G.G., et al., Optimization of plasma mirror reflectivity and optical quality using double laser pulses. New journal of physics, 2015. 17(3): p. 033027 DOI: 10.1088/1367-2630/17/3/033027. http://repository.gsi.de/record/180879
http://dx.doi.org/10.1088/1367-2630/17/3/033027.
168. Seipt, D., et al., Narrowband inverse Compton scattering x-ray sources at high laser intensities. Physical review / A, 2015. 91(3): p. 033402 DOI: 10.1103/PhysRevA.91.033402. http://repository.gsi.de/record/97792
http://dx.doi.org/10.1103/PhysRevA.91.033402.
169. Serbo, V., et al., Scattering of twisted relativistic electrons by atoms. Physical review / A, 2015. 92(1): p. 012705 DOI: 10.1103/PhysRevA.92.012705. http://repository.gsi.de/record/186871
http://dx.doi.org/10.1103/PhysRevA.92.012705.
170. Shah, C., et al., Complete measurements of anisotropic x-ray emission following recombination of highly charged ions. Journal of physics / Conference Series, 2015. 635(5): p. 052093 DOI: 10.1088/1742-6596/635/5/052093. http://repository.gsi.de/record/184285
http://dx.doi.org/10.1088/1742-6596/635/5/052093.
171. Shah, C., et al., Polarization measurement of dielectronic recombination transitions in highly charged krypton ions. Physical review / A, 2015. 92(4): p. 042702 DOI: 10.1103/PhysRevA.92.042702. http://repository.gsi.de/record/161374
http://dx.doi.org/10.1103/PhysRevA.92.042702.
172. Shah, C., et al., Linear polarization of x rays due to dielectronic recombination into highly charged ions. Journal of physics / Conference Series, 2015. 635(5): p. 052091 DOI: 10.1088/1742-6596/635/5/052091. http://repository.gsi.de/record/184290
http://dx.doi.org/10.1088/1742-6596/635/5/052091.
173. Shamir, Y., et al., High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate. Optics letters, 2015. 40(23): p. 5546 DOI: 10.1364/OL.40.005546. http://repository.gsi.de/record/186910
http://dx.doi.org/10.1364/OL.40.005546.
174. Smorra, C., et al., A reservoir trap for antiprotons. International journal of mass spectrometry, 2015. 389: p. 10 - 13 DOI: 10.1016/j.ijms.2015.08.007. http://repository.gsi.de/record/201148
http://dx.doi.org/10.1016/j.ijms.2015.08.007.
175. Sobel, N., et al., Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition. Beilstein journal of nanotechnology, 2015. 6: p. 472 - 479 DOI: 10.3762/bjnano.6.48. http://repository.gsi.de/record/180934
http://dx.doi.org/10.3762/bjnano.6.48.
176. Spende, A., et al., TiO$_2$, SiO$_2$, and Al$_2$O$_3$ coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements. Nanotechnology, 2015. 26(33): p. 335301 DOI: 10.1088/0957-4484/26/33/335301. http://repository.gsi.de/record/161261
http://dx.doi.org/10.1088/0957-4484/26/33/335301.
177. Stiebing, K.E., et al., A lepton spectrometer for studies of fundamental atomic processes at HESR at FAIR. Journal of physics / Conference Series, 2015. 635(2): p. 022087 DOI: 10.1088/1742-6596/635/2/022087. http://repository.gsi.de/record/184283
http://dx.doi.org/10.1088/1742-6596/635/2/022087.
178. Stock, S., et al., Compton scattering of twisted light: Angular distribution and polarization of scattered photons. Physical review / A, 2015. 92(1): p. 013401 DOI: 10.1103/PhysRevA.92.013401. http://repository.gsi.de/record/186872
http://dx.doi.org/10.1103/PhysRevA.92.013401.
179. Stöhlker, T., et al., APPA at FAIR: From fundamental to applied research. Nuclear instruments & methods in physics research / B, 2015. 365(Part B): p. S0168583X15006552 DOI: 10.1016/j.nimb.2015.07.077. http://repository.gsi.de/record/180877
http://dx.doi.org/10.1016/j.nimb.2015.07.077.
180. Stöhlker, T. and Y.A. Litvinov, Atomic physics experiments at the high energy storage ring. Physica scripta, 2015. T166: p. 014025 DOI: 10.1088/0031-8949/2015/T166/014025. http://repository.gsi.de/record/181060
http://dx.doi.org/10.1088/0031-8949/2015/T166/014025.
181. Stutzki, F., et al., Tm-based fiber-laser system with more than 200 MW peak power. Optics letters, 2015. 40(1): p. 9 - DOI: 10.1364/OL.40.000009. http://repository.gsi.de/record/186873
http://dx.doi.org/10.1364/OL.40.000009.
182. Sun, B.H., et al., Toward precision mass measurements of neutron-rich nuclei relevant to r-process nucleosynthesis. Frontiers of physics, 2015. 10(4): p. 1 - 25 DOI: 10.1007/s11467-015-0503-z. http://repository.gsi.de/record/161307
http://dx.doi.org/10.1007/s11467-015-0503-z.
183. Surzhykov, A., et al., Interaction of twisted light with many-electron atoms and ions. Physical review / A, 2015. 91(1): p. 013403 DOI: 10.1103/PhysRevA.91.013403. http://repository.gsi.de/record/97304
http://dx.doi.org/10.1103/PhysRevA.91.013403.
184. Surzhykov, A., et al., Rayleigh scattering of x–rays by many–electron ions. Journal of physics / Conference Series, 2015. 635(9): p. 092016 DOI: 10.1088/1742-6596/635/9/092016. http://repository.gsi.de/record/184294
http://dx.doi.org/10.1088/1742-6596/635/9/092016.
185. Surzhykov, A., et al., Corrigendum: Rayleigh x-ray scattering from many-electron atoms and ions. Journal of physics / B, 2015. 4(18): p. 189501 DOI: 10.1088/0953-4075/48/18/189501. http://repository.gsi.de/record/183588
http://dx.doi.org/10.1088/0953-4075/48/18/189501.
186. Surzhykov, A., et al., Rayleigh x-ray scattering from many-electron atoms and ions. Journal of physics / B, 2015. 48(14): p. 144015 DOI: 10.1088/0953-4075/48/14/144015. http://repository.gsi.de/record/109129
http://dx.doi.org/10.1088/0953-4075/48/14/144015.
187. Tashenov, S., et al., Coherent population of magnetic sublevels of 2p$_{3/2}$ state in hydrogenlike uranium by radiative recombination. Physica scripta, 2015. T166: p. 014027 DOI: 10.1088/0031-8949/2015/T166/014027. http://repository.gsi.de/record/181063
http://dx.doi.org/10.1088/0031-8949/2015/T166/014027.
188. Tashenov, S., et al., First observation of coherence in a highly charged ion. Journal of physics / Conference Series, 2015. 635(2): p. 022096 DOI: 10.1088/1742-6596/635/2/022096. http://repository.gsi.de/record/184274
http://dx.doi.org/10.1088/1742-6596/635/2/022096.
189. Thomaz, R., et al., Oxygen loss induced by swift heavy ions of low and high dE/dx in PMMA thin films. Nuclear instruments & methods in physics research / B, 2015. 365: p. 578 - 582 DOI: 10.1016/j.nimb.2015.09.019. http://repository.gsi.de/record/183625
http://dx.doi.org/10.1016/j.nimb.2015.09.019.
190. Tracy, C.L., et al., Redox response of actinide materials to highly ionizing radiation. Nature Communications, 2015. 6: p. 6133 - DOI: 10.1038/ncomms7133. http://repository.gsi.de/record/180927
http://dx.doi.org/10.1038/ncomms7133.
191. Tracy, C.L., et al., Phase transformations in Ln$_2$O$_3$ materials irradiated with swift heavy ions. Physical review / B, 2015. 92(17): p. 174101 DOI: 10.1103/PhysRevB.92.174101. http://repository.gsi.de/record/184684
http://dx.doi.org/10.1103/PhysRevB.92.174101.
192. Trageser, C., et al., A continuous, broadband data acquisition for Schottky signals in atomic and nuclear physics experiments at heavy-ion storage rings. Journal of physics / Conference Series, 2015. 635(2): p. 022085 DOI: 10.1088/1742-6596/635/2/022085. http://repository.gsi.de/record/184284
http://dx.doi.org/10.1088/1742-6596/635/2/022085.
193. Trageser, C., et al., A new data acquisition system for Schottky signals in atomic physics experiments at GSI's and FAIR's storage rings. Physica scripta, 2015. T166: p. 014062 DOI: 10.1088/0031-8949/2015/T166/014062. http://repository.gsi.de/record/183253
http://dx.doi.org/10.1088/0031-8949/2015/T166/014062.
194. Trotsenko, S., et al., Experimental study of the dielectronic recombination into Li-like uranium. Physica scripta, 2015. T166: p. 014024 DOI: 10.1088/0031-8949/2015/T166/014024. http://repository.gsi.de/record/183246
http://dx.doi.org/10.1088/0031-8949/2015/T166/014024.
195. Tu, X.L., et al., Study of projectile fragmentation reaction with isochronous mass spectrometry. Physica scripta, 2015. T166: p. 014009 DOI: 10.1088/0031-8949/2015/T166/014009. http://repository.gsi.de/record/181070
http://dx.doi.org/10.1088/0031-8949/2015/T166/014009.
196. Ullmann, J., et al., An improved value for the hyperfine splitting of hydrogen-like $^{209}$Bi$^{82+}$. Journal of physics / B, 2015. 48(14): p. 144022 DOI: 10.1088/0953-4075/48/14/144022. http://repository.gsi.de/record/183584
http://dx.doi.org/10.1088/0953-4075/48/14/144022.
197. Ulmer, S., et al., High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature <London>, 2015. 524(7564): p. 196 - 199 DOI: 10.1038/nature14861. http://repository.gsi.de/record/201147
http://dx.doi.org/10.1038/nature14861.
198. Vogel, M., et al., Penning-trap experiments for spectroscopy of highly-charged ions at HITRAP. Physica scripta, 2015. T166: p. 014066 DOI: 10.1088/0031-8949/2015/T166/014066. http://repository.gsi.de/record/183268
http://dx.doi.org/10.1088/0031-8949/2015/T166/014066.
199. Vogel, M., et al., Extreme-field physics in Penning traps, in 6th International Conference on Trapped Charged Particles and Fundamental. 2015, Springer Science + Business Media B.V: Takamatsu, Japan. p. 65 - 71 DOI: 10.1007/s10751-015-1173-5. http://repository.gsi.de/record/184433
http://dx.doi.org/10.1007/s10751-015-1173-5.
200. Vollbrecht, J., et al., Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth. Journal of physics / Conference Series, 2015. 583: p. 012002 - DOI: 10.1088/1742-6596/583/1/012002. http://repository.gsi.de/record/96940
http://dx.doi.org/10.1088/1742-6596/583/1/012002.
201. Wagner, F., et al., Simultaneous observation of angularly separated laser-driven proton beams accelerated via two different mechanisms. Physics of plasmas, 2015. 22(6): p. 063110 DOI: 10.1063/1.4922661. http://repository.gsi.de/record/180867
http://dx.doi.org/10.1063/1.4922661.
202. Wang, H.Y., et al., Gamma-ray emission in near critical density plasmas at laser intensities of 10$^{21}$ W/cm$^{2}$. Physics of plasmas, 2015. 22(3): p. 033102 DOI: 10.1063/1.4913991. http://repository.gsi.de/record/186883
http://dx.doi.org/10.1063/1.4913991.
203. Wang, H.Y., X.Q. Yan, and M. Zepf, High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse. Physical review / Special topics / Accelerators and beams, 2015. 18(2): p. 021302 DOI: 10.1103/PhysRevSTAB.18.021302. http://repository.gsi.de/record/186885
http://dx.doi.org/10.1103/PhysRevSTAB.18.021302.
204. Wang, H.Y., X.Q. Yan, and M. Zepf, Signatures of quantum radiation reaction in laser-electron-beam collisions. Physics of plasmas, 2015. 22(9): p. 093103 DOI: 10.1063/1.4929851. http://repository.gsi.de/record/186884
http://dx.doi.org/10.1063/1.4929851.
205. Weber, G., et al., Compton polarimetry using double-sided segmented x-ray detectors. Journal of physics / Conference Series, 2015. 583: p. 012041 - DOI: 10.1088/1742-6596/583/1/012041. http://repository.gsi.de/record/96939
http://dx.doi.org/10.1088/1742-6596/583/1/012041.
206. Weber, G., et al., Combined linear polarization and angular distribution measurements of x-rays for precise determination of multipole-mixing in characteristic transitions of high- Z systems. Journal of physics / B, 2015. 48(14): p. 144031 DOI: 10.1088/0953-4075/48/14/144031. http://repository.gsi.de/record/183619
http://dx.doi.org/10.1088/0953-4075/48/14/144031.
207. Weber, G., et al., Towards a fast calculator for the radiation characteristics of radiative recombination and radiative electron capture. FAIRNESS 2014, 2015. 599: p. 012040 DOI: 10.1088/1742-6596/599/1/012040. http://repository.gsi.de/record/108783
http://dx.doi.org/10.1088/1742-6596/599/1/012040.
208. Weber, G., et al., Total projectile electron loss cross sections of U$^{28+}$ ions in collisions with gaseous targets ranging from hydrogen to krypton. Physical review / Special topics / Accelerators and beams, 2015. 18(3): p. 034403 DOI: 10.1103/PhysRevSTAB.18.034403. http://repository.gsi.de/record/97799
http://dx.doi.org/10.1103/PhysRevSTAB.18.034403.
209. Willingale, L., et al., Characterization of laser-driven proton beams from near-critical density targets using copper activation. Journal of plasma physics, 2015. 81(01): p. 365810102 DOI: 10.1017/S002237781400066X. http://repository.gsi.de/record/186911
http://dx.doi.org/10.1017/S002237781400066X.
210. Winters, D., et al., Laser cooling of relativistic heavy-ion beams for FAIR. Physica scripta, 2015. T166: p. 014048 DOI: 10.1088/0031-8949/2015/T166/014048. http://repository.gsi.de/record/181061
http://dx.doi.org/10.1088/0031-8949/2015/T166/014048.
211. Woods, P., et al., Nuclear astrophysics experiments at storage rings: midterm perspectives at GSI. Physica scripta, 2015. T166: p. 014002 DOI: 10.1088/0031-8949/2015/T166/014002. http://repository.gsi.de/record/183252
http://dx.doi.org/10.1088/0031-8949/2015/T166/014002.
212. Wu, Z., et al., Dielectronic recombination rate coefficients of initially rubidium-like tungsten. The @European physical journal / D, 2015. 69(5): p. 140 DOI: 10.1140/epjd/e2015-50634-6. http://repository.gsi.de/record/186888
http://dx.doi.org/10.1140/epjd/e2015-50634-6.
213. Wu, Z.W., S. Fritzsche, and A. Surzhykov, Nuclear magnetic dipole moment effect on the angular distribution of the Kα lines. Physica scripta, 2015. T166: p. 014029 DOI: 10.1088/0031-8949/2015/T166/014029. http://repository.gsi.de/record/181066
http://dx.doi.org/10.1088/0031-8949/2015/T166/014029.
214. Wu, Z.W., A. Surzhykov, and S. Fritzsche, Reply to ''Comment on ‘Hyperfine-induced modifications to the angular distribution of the $K_{α1}$ x-ray emission’ ''. Physical review / A, 2015. 91(5): p. 056502 DOI: 10.1103/PhysRevA.91.056502. http://repository.gsi.de/record/109150
http://dx.doi.org/10.1103/PhysRevA.91.056502.
215. Wu, Z.W., et al., Linear polarization of x-rays emitted in the decay of highly-charged ions via overlapping resonances. Journal of physics / Conference Series, 2015. 635(1): p. 012020 DOI: 10.1088/1742-6596/635/1/012020. http://repository.gsi.de/record/184287
http://dx.doi.org/10.1088/1742-6596/635/1/012020.
216. Wustelt, P., et al., Momentum-resolved study of the saturation intensity in multiple ionization. Physical review / A, 2015. 91(3): p. 031401 DOI: 10.1103/PhysRevA.91.031401. http://repository.gsi.de/record/97790
http://dx.doi.org/10.1103/PhysRevA.91.031401.
217. Wut, Z.W., et al., Can angle-resolved x-ray measurements help determine small level splittings in highly charged ions? Journal of physics / Conference Series, 2015. 635(9): p. 092030 DOI: 10.1088/1742-6596/635/9/092030. http://repository.gsi.de/record/184288
http://dx.doi.org/10.1088/1742-6596/635/9/092030.
218. Xing, Y.M., et al., First isochronous mass measurements with two time-of-flight detectors at CSRe. Physica scripta, 2015. T166: p. 014010 DOI: 10.1088/0031-8949/2015/T166/014010. http://repository.gsi.de/record/183241
http://dx.doi.org/10.1088/0031-8949/2015/T166/014010.
219. Xu, G., et al., New model of calculating the energy transfer efficiency for the spherical theta-pinch device. Physics of plasmas, 2015. 22(5): p. 052703 DOI: 10.1063/1.4919938. http://repository.gsi.de/record/180955
http://dx.doi.org/10.1063/1.4919938.
220. Xu, X., et al., A data analysis method for isochronous mass spectrometry using two time-of-flight detectors at CSRe. Chinese physics / C, 2015. 39(10): p. 106201 DOI: 10.1088/1674-1137/39/10/106201. http://repository.gsi.de/record/184702
http://dx.doi.org/10.1088/1674-1137/39/10/106201.
221. Xu, X., et al., Direct mass measurements of neutron-rich $^{86}$Kr projectile fragments and the persistence of neutron magic number N =32 in Sc isotopes. Chinese physics / C, 2015. 39(10): p. 104001 DOI: 10.1088/1674-1137/39/10/104001. http://repository.gsi.de/record/185633
http://dx.doi.org/10.1088/1674-1137/39/10/104001.
222. Yablinsky, C.A., et al., Characterization of swift heavy ion irradiation damage in ceria. Journal of materials research, 2015. 30(9): p. 1473 - 1484 DOI: 10.1557/jmr.2015.43. http://repository.gsi.de/record/180930
http://dx.doi.org/10.1557/jmr.2015.43.
223. Yahia, V., et al., Reduction of stimulated Brillouin backscattering with plasma beam smoothing. Physics of plasmas, 2015. 22(4): p. 042707 DOI: 10.1063/1.4918942. http://repository.gsi.de/record/180920
http://dx.doi.org/10.1063/1.4918942.
224. Yan, X., et al., Investigation of the momentum compaction factor of the ESR thorough Schottky mass measurements. Physica scripta, 2015. T166: p. 014045 DOI: 10.1088/0031-8949/2015/T166/014045. http://repository.gsi.de/record/183265
http://dx.doi.org/10.1088/0031-8949/2015/T166/014045.
225. Yerokhin, V.A., et al., Target effects in negative-continuum-assisted dielectronic recombination. Physical review / A, 2015. 92(4): p. 042708 DOI: 10.1103/PhysRevA.92.042708. http://repository.gsi.de/record/180859
http://dx.doi.org/10.1103/PhysRevA.92.042708.
226. Yerokhin, V.A., A. Surzhykov, and S. Fritzsche, Relativistic configuration-interaction calculation of K α transition energies in beryllium-like argon. Physica scripta, 2015. 90(5): p. 054003 DOI: 10.1088/0031-8949/90/5/054003. http://repository.gsi.de/record/186874
http://dx.doi.org/10.1088/0031-8949/90/5/054003.
227. Yeung, M., et al., Noncollinear Polarization Gating of Attosecond Pulse Trains in the Relativistic Regime. Physical review letters, 2015. 115(19): p. 193903 DOI: 10.1103/PhysRevLett.115.193903. http://repository.gsi.de/record/186875
http://dx.doi.org/10.1103/PhysRevLett.115.193903.
228. Zabels, R., et al., Depth profiles of indentation hardness and dislocation mobility in MgO single crystals irradiated with swift $^{84}$Kr and $^{14}$N ions. Applied physics / A, 2015. 120(1): p. 167-173 DOI: 10.1007/s00339-015-9145-9. http://repository.gsi.de/record/161262
http://dx.doi.org/10.1007/s00339-015-9145-9.
229. Zastrau, U., et al., Ultrafast electron kinetics in short pulse laser-driven dense hydrogen. Journal of physics / B, 2015. 48(22): p. 224004 DOI: 10.1088/0953-4075/48/22/224004. http://repository.gsi.de/record/186876
http://dx.doi.org/10.1088/0953-4075/48/22/224004.
230. Zaytsev, V.A., et al., Parity nonconservation effect in the resonance elastic electron scattering on heavy He-like ions. Journal of physics / B, 2015. 48(16): p. 165003 DOI: 10.1088/0953-4075/48/16/165003. http://repository.gsi.de/record/109126
http://dx.doi.org/10.1088/0953-4075/48/16/165003.
231. Zürch, M. and C. Spielmann, Extreme ultraviolet digital in-line holography using a tabletop source. Applied optics, 2015. 54(19): p. 5992 - DOI: 10.1364/AO.54.005992. http://repository.gsi.de/record/186877
http://dx.doi.org/10.1364/AO.54.005992.
2016
1. Acharya, B., C. Ji, and L. Platter, Effective-field-theory analysis of Efimov physics in heteronuclear mixtures of ultracold atomic gases. Physical review / A, 2016. 94(3): p. 032702 DOI: 10.1103/PhysRevA.94.032702. http://repository.gsi.de/record/201131
http://dx.doi.org/10.1103/PhysRevA.94.032702.
2. Alejo, A., et al., High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams. Review of scientific instruments, 2016. 87(8): p. 083304 DOI: 10.1063/1.4961028. http://repository.gsi.de/record/201090
http://dx.doi.org/10.1063/1.4961028.
3. Alencar, I., et al., Irradiation effects in CaF$_2$ probed by Raman scattering. Journal of Raman spectroscopy, 2016. 47(8): p. 978 - 983 DOI: 10.1002/jrs.4927. http://repository.gsi.de/record/200457
http://dx.doi.org/10.1002/jrs.4927.
4. Alexeev, V., et al., Charge spectrum of heavy and superheavy componets of galactic cosmic rays: results of the OLIMPIYA experiment. The @astrophysical journal / 1, 2016. 829(2): p. 120 - DOI: 10.3847/0004-637X/829/2/120. http://repository.gsi.de/record/195717
http://dx.doi.org/10.3847/0004-637X/829/2/120.
5. Ali, M., et al., Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores. Small, 2016. 12(15): p. 2014 - 2021 DOI: 10.1002/smll.201600160. http://repository.gsi.de/record/187040
http://dx.doi.org/10.1002/smll.201600160.
6. Ali, M., S. Nasir, and W. Ensinger, Stereoselective detection of amino acids with protein-modified single asymmetric nanopores. Electrochimica acta, 2016. 215: p. 231 - 237 DOI: 10.1016/j.electacta.2016.08.067. http://repository.gsi.de/record/200460
http://dx.doi.org/10.1016/j.electacta.2016.08.067.
7. Apel, P.Y., et al., Shedding light on the mechanism of asymmetric track etching: an interplay between latent track structure, etchant diffusion and osmotic flow. Physical chemistry, chemical physics, 2016. 18(36): p. 25421 - 25433 DOI: 10.1039/C6CP05465J. http://repository.gsi.de/record/194930
http://dx.doi.org/10.1039/C6CP05465J.
8. Asavei, et al., Materials in extreme environments for energy, accelerators and space applications at ELI-NP. Romanian reports in physics, 2016. 68: p. S275-S347. http://repository.gsi.de/record/200466.
9. Babcock, C., et al., Quadrupole moments of odd-A $^{53−63}$Mn: Onset of collectivity towards N = 40. Physics letters / B, 2016. 760: p. 387 - 392 DOI: 10.1016/j.physletb.2016.07.016. http://repository.gsi.de/record/201125
http://dx.doi.org/10.1016/j.physletb.2016.07.016.
10. Bagnoud, V. and F. Wagner, Ultrahigh temporal contrast performance of the PHELIX petawatt facility. High power laser science and engineering, 2016. 4: p. e39 DOI: 10.1017/hpl.2016.38. http://repository.gsi.de/record/196331
http://dx.doi.org/10.1017/hpl.2016.38.
11. Bergmann, B., et al., Angular correlation function of the hypersatellite-satellite x-ray cascade following K -shell electron capture of $^{55}$Fe. Physical review / C, 2016. 94(1): p. 014611 DOI: 10.1103/PhysRevC.94.014611. http://repository.gsi.de/record/200937
http://dx.doi.org/10.1103/PhysRevC.94.014611.
12. Bernhardt, D., et al., Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions. Journal of physics / B, 2016. 49(7): p. 074004 DOI: 10.1088/0953-4075/49/7/074004. http://repository.gsi.de/record/186269
http://dx.doi.org/10.1088/0953-4075/49/7/074004.
13. Bernhardt, D., et al., Erratum: Electron-ion collision spectroscopy: Lithium-like xenon ions [Phys. Rev. A 91, 012710 (2015)]. Physical review / A covering atomic, molecular, and optical physics and quantum information, 2016. 94(2): p. 029903 DOI: 10.1103/PhysRevA.94.029903. http://repository.gsi.de/record/201216
http://dx.doi.org/10.1103/PhysRevA.94.029903.
14. Bernhardt, H., et al., High purity x-ray polarimetry with single-crystal diamonds. Applied physics letters, 2016. 109(12): p. 121106 DOI: 10.1063/1.4962806. http://repository.gsi.de/record/200912
http://dx.doi.org/10.1063/1.4962806.
15. Bissell, M.L., et al., Cu charge radii reveal a weak sub-shell effect at N = 40. Physical review / C, 2016. 93(6): p. 064318 DOI: 10.1103/PhysRevC.93.064318. http://repository.gsi.de/record/200949
http://dx.doi.org/10.1103/PhysRevC.93.064318.
16. Blinne, A. and E. Strobel, Comparison of semiclassical and Wigner function methods in pair production in rotating fields. Physical review / D, 2016. 93(2): p. 025014 DOI: 10.1103/PhysRevD.93.025014. http://repository.gsi.de/record/200983
http://dx.doi.org/10.1103/PhysRevD.93.025014.
17. Blumenhagen, K.-H., et al., Erratum: Polarization transfer in Rayleigh scattering of hard x-rays (2016 New J. Phys. 18 103034). New journal of physics, 2016. 18(11): p. 119601 DOI: 10.1088/1367-2630/18/11/119601. http://repository.gsi.de/record/205471
http://dx.doi.org/10.1088/1367-2630/18/11/119601.
18. Blumenhagen, K.-H., et al., Polarization transfer in Rayleigh scattering of hard x-rays. New journal of physics, 2016. 18(10): p. 103034 DOI: 10.1088/1367-2630/18/10/103034. http://repository.gsi.de/record/201115
http://dx.doi.org/10.1088/1367-2630/18/10/103034.
19. Boehm, K.-J., et al., Design and Engineering of a Target for X-Ray Thomson Scattering Measurements on Matter at Extreme Densities and Gigabar Pressures. Fusion science and technology, 2016. 70(2): p. 324-331 DOI: 10.13182/FST15-242. http://repository.gsi.de/record/201099
http://dx.doi.org/10.13182/FST15-242.
20. Bogatskaya, A.V., et al., Polarization response in extreme nonlinear optics: when can the semiclassical approach be used? Laser physics letters, 2016. 13(4): p. 045301 DOI: 10.1088/1612-2011/13/4/045301. http://repository.gsi.de/record/200973
http://dx.doi.org/10.1088/1612-2011/13/4/045301.
21. Borchardt, J., H. Gies, and R. Sondenheimer, Global flow of the Higgs potential in a Yukawa model. The @European physical journal / C, 2016. 76(8): p. 472 DOI: 10.1140/epjc/s10052-016-4300-9. http://repository.gsi.de/record/200923
http://dx.doi.org/10.1140/epjc/s10052-016-4300-9.
22. Borm, B., et al., Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks. Review of scientific instruments, 2016. 87(9): p. 093104 DOI: 10.1063/1.4961666. http://repository.gsi.de/record/201098
http://dx.doi.org/10.1063/1.4961666.
23. Borovik, A., et al., Electron-impact single ionization of W$^{19+}$ ions. Physical review / A, 2016. 93(1): p. 012708 DOI: 10.1103/PhysRevA.93.012708. http://repository.gsi.de/record/189651
http://dx.doi.org/10.1103/PhysRevA.93.012708.
24. Braun, J., et al., Crystalline ground states in Polyakov-loop extended Nambu–Jona-Lasinio models. Physical review / D, 2016. 93(1): p. 014032 DOI: 10.1103/PhysRevD.93.014032. http://repository.gsi.de/record/200984
http://dx.doi.org/10.1103/PhysRevD.93.014032.
25. Breitkopf, S., et al., Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity. Applied physics / B, 2016. 122(12): p. 297 DOI: 10.1007/s00340-016-6574-x. http://repository.gsi.de/record/200893
http://dx.doi.org/10.1007/s00340-016-6574-x.
26. Breuer, L., et al., Secondary ion and neutral mass spectrometry with swift heavy ions: Organic molecules. Journal of vacuum science & technology / B, 2016. 34(3): p. 03H130 DOI: 10.1116/1.4943158. http://repository.gsi.de/record/187041
http://dx.doi.org/10.1116/1.4943158.
27. Butler, P.A., et al., TSR: A storage and cooling ring for HIE-ISOLDE. Nuclear instruments & methods in physics research / B, 2016. 376: p. 270 - 274 DOI: 10.1016/j.nimb.2015.12.006. http://repository.gsi.de/record/201123
http://dx.doi.org/10.1016/j.nimb.2015.12.006.
28. Butler, P.A., et al., TSR: A Storage Ring for HIE-ISOLDE. Acta physica Polonica / B, 2016. 47(3): p. 627 - 636 DOI: 10.5506/APhysPolB.47.627. http://repository.gsi.de/record/186993
http://dx.doi.org/10.5506/APhysPolB.47.627.
29. Cassinelli, M., et al., Low temperature annealing effects on the stability of Bi nanowires. Physica status solidi / A, 2016. 213(3): p. 603 - 609 DOI: 10.1002/pssa.201532613. http://repository.gsi.de/record/187003
http://dx.doi.org/10.1002/pssa.201532613.
30. Cayzac, W., et al., Simulations of the energy loss of ions at the stopping-power maximum in a laser-induced plasma. Journal of physics / Conference Series, 2016. 688: p. 012009 DOI: 10.1088/1742-6596/688/1/012009. http://repository.gsi.de/record/194918
http://dx.doi.org/10.1088/1742-6596/688/1/012009.
31. Clochard, M.-C., et al., Large area fabrication of self-standing nanoporous graphene-on-PMMA substrate. Materials letters, 2016. 184: p. 47 - 51 DOI: 10.1016/j.matlet.2016.07.133. http://repository.gsi.de/record/194905
http://dx.doi.org/10.1016/j.matlet.2016.07.133.
32. Cousens, S., et al., Temporal Structure of Attosecond Pulses from Laser-Driven Coherent Synchrotron Emission. Physical review letters, 2016. 116(8): p. 083901 DOI: 10.1103/PhysRevLett.116.083901. http://repository.gsi.de/record/201222
http://dx.doi.org/10.1103/PhysRevLett.116.083901.
33. Dimitrov, N., et al., Pulse front tilt measurement of femtosecond laser pulses. Optics communications, 2016. 371: p. 51 - 58 DOI: 10.1016/j.optcom.2016.03.054. http://repository.gsi.de/record/201220
http://dx.doi.org/10.1016/j.optcom.2016.03.054.
34. Döppner, T., et al., Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility. Review of scientific instruments, 2016. 87(11): p. 11E515 DOI: 10.1063/1.4959874. http://repository.gsi.de/record/201097
http://dx.doi.org/10.1063/1.4959874.
35. Drągowski, M., et al., Monte Carlo study of the effective Sherman function for electron polarimetry. Nuclear instruments & methods in physics research / B, 2016. 389-390: p. 48 - 55 DOI: 10.1016/j.nimb.2016.11.018. http://repository.gsi.de/record/200895
http://dx.doi.org/10.1016/j.nimb.2016.11.018.
36. Dromey, B., et al., Picosecond metrology of laser-driven proton bursts. Nature Communications, 2016. 7: p. 10642 - DOI: 10.1038/ncomms10642. http://repository.gsi.de/record/200977
http://dx.doi.org/10.1038/ncomms10642.
37. Duan, J., et al., Surface plasmonic spectroscopy revealing the oxidation dynamics of copper nanowires embedded in polycarbonate ion-track templates. Journal of materials chemistry / C, 2016. 4(18): p. 3956 - 3962 DOI: 10.1039/C5TC03897A. http://repository.gsi.de/record/186995
http://dx.doi.org/10.1039/C5TC03897A.
38. Duan, J.L., et al., Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission. ACS applied materials & interfaces, 2016. 8(1): p. 472 - 479 DOI: 10.1021/acsami.5b09374. http://repository.gsi.de/record/184634
http://dx.doi.org/10.1021/acsami.5b09374.
39. Ebrahimi, M.S., et al., Superconducting radio-frequency resonator in magnetic fields up to 6 T. Review of scientific instruments, 2016. 87(7): p. 075110 DOI: 10.1063/1.4958647. http://repository.gsi.de/record/201081
http://dx.doi.org/10.1063/1.4958647.
40. El-Said, A.S., et al., Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions. Nuclear instruments & methods in physics research / B, 2016. 382: p. 86 - 90 DOI: 10.1016/j.nimb.2016.04.058. http://repository.gsi.de/record/194877
http://dx.doi.org/10.1016/j.nimb.2016.04.058.
41. Faatz, B., et al., Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator. New journal of physics, 2016. 18(6): p. 062002 DOI: 10.1088/1367-2630/18/6/062002. http://repository.gsi.de/record/200943
http://dx.doi.org/10.1088/1367-2630/18/6/062002.
42. Filippin, L., et al., Multiconfiguration calculations of electronic isotope shift factors in Al i. Physical review / A, 2016. 94(6): p. 062508 DOI: 10.1103/PhysRevA.94.062508. http://repository.gsi.de/record/205470
http://dx.doi.org/10.1103/PhysRevA.94.062508.
43. Filippov, E.D., et al., Parameters of supersonic astrophysically-relevant plasma jets collimating via poloidal magnetic field measured by x-ray spectroscopy method, in 31st International Conference on Equations of State for Matter. 2016, IOP Publ.: Elbrus, Russia. p. 012114 - DOI: 10.1088/1742-6596/774/1/012114. http://repository.gsi.de/record/206395
http://dx.doi.org/10.1088/1742-6596/774/1/012114.
44. Fuchs, S., et al., Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation. Scientific reports, 2016. 6: p. 20658 - DOI: 10.1038/srep20658. http://repository.gsi.de/record/200980
http://dx.doi.org/10.1038/srep20658.
45. Gaida, C., et al., Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power. Optics letters, 2016. 41(17): p. 4130 - DOI: 10.1364/OL.41.004130. http://repository.gsi.de/record/200918
http://dx.doi.org/10.1364/OL.41.004130.
46. Gies, H., F. Karbstein, and N. Seegert, Photon merging and splitting in electromagnetic field inhomogeneities. Physical review / D, 2016. 93(8): p. 085034 DOI: 10.1103/PhysRevD.93.085034. http://repository.gsi.de/record/200967
http://dx.doi.org/10.1103/PhysRevD.93.085034.
47. Gies, H. and G. Torgrimsson, Critical Schwinger Pair Production. Physical review letters, 2016. 116(9): p. 090406 DOI: 10.1103/PhysRevLett.116.090406. http://repository.gsi.de/record/200975
http://dx.doi.org/10.1103/PhysRevLett.116.090406.
48. Gopal, A., et al., Smith–Purcell radiation in the terahertz regime using charged particle beams from laser–matter interactions. Laser and particle beams, 2016. 34(01): p. 187 - 191 DOI: 10.1017/S0263034615001093. http://repository.gsi.de/record/200972
http://dx.doi.org/10.1017/S0263034615001093.
49. Grum-Grzhimailo, A.N., et al., Photoelectron angular distributions and correlations in sequential double and triple atomic ionization by free electron lasers. Journal of modern optics, 2016. 63(4): p. 334 - 357 DOI: 10.1080/09500340.2015.1047805. http://repository.gsi.de/record/200942
http://dx.doi.org/10.1080/09500340.2015.1047805.
50. Gupta, S., et al., Conducting ion tracks generated by charge-selected swift heavy ions. Nuclear instruments & methods in physics research / B, 2016. 381: p. 76 - 83 DOI: 10.1016/j.nimb.2016.05.010. http://repository.gsi.de/record/189298
http://dx.doi.org/10.1016/j.nimb.2016.05.010.
51. Haber, J., et al., Collective strong coupling of X-rays and nuclei in a nuclear optical lattice. Nature photonics, 2016. 10(7): p. 445 - 449 DOI: 10.1038/nphoton.2016.77. http://repository.gsi.de/record/200953
http://dx.doi.org/10.1038/nphoton.2016.77.
52. Hädrich, S., et al., Energetic sub-2-cycle laser with 216 W average power. Optics letters, 2016. 41(18): p. 4332 - DOI: 10.1364/OL.41.004332. http://repository.gsi.de/record/200916
http://dx.doi.org/10.1364/OL.41.004332.
53. Hädrich, S., et al., Single-pass high harmonic generation at high repetition rate and photon flux. Journal of physics / B, 2016. 49(17): p. 172002 DOI: 10.1088/0953-4075/49/17/172002. http://repository.gsi.de/record/200924
http://dx.doi.org/10.1088/0953-4075/49/17/172002.
54. Hädrich, S., et al., Scalability of components for kW-level average power few-cycle lasers. Applied optics, 2016. 55(7): p. 1636 - DOI: 10.1364/AO.55.001636. http://repository.gsi.de/record/200969
http://dx.doi.org/10.1364/AO.55.001636.
55. Hahn, C., et al., CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation. Review of scientific instruments, 2016. 87(4): p. 043106 DOI: 10.1063/1.4945362. http://repository.gsi.de/record/200968
http://dx.doi.org/10.1063/1.4945362.
56. Hahn, M., et al., Storage ring cross section measurements for electron impact ionization of Fe$^{8+}$. Journal of physics / B, 2016. 49(8): p. 084006 DOI: 10.1088/0953-4075/49/8/084006. http://repository.gsi.de/record/186821
http://dx.doi.org/10.1088/0953-4075/49/8/084006.
57. Hansinger, P., et al., White light generated by femtosecond optical vortex beams. Journal of the Optical Society of America / B, 2016. 33(4): p. 681 - DOI: 10.1364/JOSAB.33.000681. http://repository.gsi.de/record/200961
http://dx.doi.org/10.1364/JOSAB.33.000681.
58. Hayrapetyan, A.G., et al., Electromagnetic wave propagation in spatially homogeneous yet smoothly time-varying dielectric media. Journal of quantitative spectroscopy & radiative transfer, 2016. 178: p. 158 - 166 DOI: 10.1016/j.jqsrt.2015.12.007. http://repository.gsi.de/record/201227
http://dx.doi.org/10.1016/j.jqsrt.2015.12.007.
59. Heylen, H., et al., Changes in nuclear structure along the Mn isotopic chain studied via charge radii. Physical review / C, 2016. 94(5): p. 054321 DOI: 10.1103/PhysRevC.94.054321. http://repository.gsi.de/record/200907
http://dx.doi.org/10.1103/PhysRevC.94.054321.
60. Hillenbrand, P.-M., et al., Strong asymmetry of the electron-loss-to-continuum cusp of multielectron U$^{28+}$ projectiles in near-relativistic collisions with gaseous targets. Physical review / A, 2016. 93(4): p. 042709 DOI: 10.1103/PhysRevA.93.042709. http://repository.gsi.de/record/186986
http://dx.doi.org/10.1103/PhysRevA.93.042709.
61. Hofbrucker, J., A.V. Volotka, and S. Fritzsche, Relativistic calculations of the nonresonant two-photon ionization of neutral atoms. Physical review / A, 2016. 94(6): p. 063412 DOI: 10.1103/PhysRevA.94.063412. http://repository.gsi.de/record/200897
http://dx.doi.org/10.1103/PhysRevA.94.063412.
62. Höfer, S., et al., Communication: The formation of rarefaction waves in semiconductors after ultrashort excitation probed by grazing incidence ultrafast time-resolved x-ray diffraction. Structural dynamics, 2016. 3(5): p. 051101 DOI: 10.1063/1.4963011. http://repository.gsi.de/record/200922
http://dx.doi.org/10.1063/1.4963011.
63. Hornung, M., et al., 54 J pulses with 18 nm bandwidth from a diode-pumped chirped-pulse amplification laser system. Optics letters, 2016. 41(22): p. 5413 - DOI: 10.1364/OL.41.005413. http://repository.gsi.de/record/200902
http://dx.doi.org/10.1364/OL.41.005413.
64. Ivanov, I.P., et al., Double-slit experiment in momentum space. epl, 2016. 115(4): p. 41001 DOI: 10.1209/0295-5075/115/41001. http://repository.gsi.de/record/201129
http://dx.doi.org/10.1209/0295-5075/115/41001.
65. Ivanov, I.P., et al., Elastic scattering of vortex electrons provides direct access to the Coulomb phase. Physical review / D, 2016. 94(7): p. 076001 DOI: 10.1103/PhysRevD.94.076001. http://repository.gsi.de/record/200911
http://dx.doi.org/10.1103/PhysRevD.94.076001.
66. Jauregui, C., et al., Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities. Optics express, 2016. 24(8): p. 7879 - DOI: 10.1364/OE.24.007879. http://repository.gsi.de/record/200964
http://dx.doi.org/10.1364/OE.24.007879.
67. Jean, C., et al., Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire. Nano letters, 2016. 16(10): p. 6592 - 6598 DOI: 10.1021/acs.nanolett.6b03260. http://repository.gsi.de/record/195744
http://dx.doi.org/10.1021/acs.nanolett.6b03260.
68. Kämpfer, T., et al., Linear polarization of the characteristic x-ray lines following inner-shell photoionization of tungsten. Physical review / A, 2016. 93(3): p. 033409 DOI: 10.1103/PhysRevA.93.033409. http://repository.gsi.de/record/186822
http://dx.doi.org/10.1103/PhysRevA.93.033409.
69. Kantsyrev, A.V., et al., Quadrupole lenses on the basis of permanent magnets for a PRIOR proton microscope prototype. Instruments and experimental techniques, 2016. 59(5): p. 712 - 723 DOI: 10.1134/S0020441216040072. http://repository.gsi.de/record/201096
http://dx.doi.org/10.1134/S0020441216040072.
70. Kar, S., et al., Guided post-acceleration of laser-driven ions by a miniature modular structure. Nature Communications, 2016. 7: p. 10792 - DOI: 10.1038/ncomms10792. http://repository.gsi.de/record/201223
http://dx.doi.org/10.1038/ncomms10792.
71. Karbstein, F. and C. Sundqvist, Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers. Physical review / D, 2016. 94(1): p. 013004 DOI: 10.1103/PhysRevD.94.013004. http://repository.gsi.de/record/200939
http://dx.doi.org/10.1103/PhysRevD.94.013004.
72. Keppler, S., et al., Tunable filters for precise spectral gain control in ultra-short-pulse laser systems. Optics letters, 2016. 41(20): p. 4708 - DOI: 10.1364/OL.41.004708. http://repository.gsi.de/record/200908
http://dx.doi.org/10.1364/OL.41.004708.
73. Keppler, S., et al., The generation of amplified spontaneous emission in high-power CPA laser systems. Laser & photonics reviews, 2016. 10(2): p. 264 - 277 DOI: 10.1002/lpor.201500186. http://repository.gsi.de/record/200971
http://dx.doi.org/10.1002/lpor.201500186.
74. Kharin, V.Y., D. Seipt, and S.G. Rykovanov, Temporal laser-pulse-shape effects in nonlinear Thomson scattering. Physical review / A, 2016. 93(6): p. 063801 DOI: 10.1103/PhysRevA.93.063801. http://repository.gsi.de/record/200948
http://dx.doi.org/10.1103/PhysRevA.93.063801.
75. Kienel, M., et al., 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Optics letters, 2016. 41(14): p. 3343 - DOI: 10.1364/OL.41.003343. http://repository.gsi.de/record/200932
http://dx.doi.org/10.1364/OL.41.003343.
76. Klas, R., et al., Table-top milliwatt-class extreme ultraviolet high harmonic light source. Optica, 2016. 3(11): p. 1167 - DOI: 10.1364/OPTICA.3.001167. http://repository.gsi.de/record/200901
http://dx.doi.org/10.1364/OPTICA.3.001167.
77. Kohlfürst, C. and R. Alkofer, On the effect of time-dependent inhomogeneous magnetic fields in electron–positron pair production. Physics letters / B, 2016. 756: p. 371 - 375 DOI: 10.1016/j.physletb.2016.03.027. http://repository.gsi.de/record/200959
http://dx.doi.org/10.1016/j.physletb.2016.03.027.
78. Körner, J., J. Hein, and M. Kaluza, Compact Aberration-Free Relay-Imaging Multi-Pass Layouts for High-Energy Laser Amplifiers. Applied Sciences, 2016. 6(11): p. 353 - DOI: 10.3390/app6110353. http://repository.gsi.de/record/200899
http://dx.doi.org/10.3390/app6110353.
79. Körner, J., et al., Spatially and temporally resolved temperature measurement in laser media. Optics letters, 2016. 41(11): p. 2525 - DOI: 10.1364/OL.41.002525. http://repository.gsi.de/record/200944
http://dx.doi.org/10.1364/OL.41.002525.
80. Kostenko, O.F., et al., On the hot electrons and K α x-rays generation in the intense laser interaction with silver targets, in 31st International Conference on Equations of State for Matter (ELBRUS). 2016, IOP Publ.: Elbrus, Russia. p. 012112 DOI: 10.1088/1742-6596/774/1/012112. http://repository.gsi.de/record/206394
http://dx.doi.org/10.1088/1742-6596/774/1/012112.
81. Krasik, Y.E., et al., Underwater Electrical Explosion of Wires and Wire Arrays and Generation of Converging Shock Waves. IEEE transactions on plasma science, 2016. 44(4): p. 412 - 431 DOI: 10.1109/TPS.2015.2513757. http://repository.gsi.de/record/194917
http://dx.doi.org/10.1109/TPS.2015.2513757.
82. Kraus, D., et al., X-ray scattering measurements on imploding CH spheres at the National Ignition Facility. Physical review / E, 2016. 94(1): p. 011202 DOI: 10.1103/PhysRevE.94.011202. http://repository.gsi.de/record/194920
http://dx.doi.org/10.1103/PhysRevE.94.011202.
83. Kraus, D., et al., Platform for spectrally resolved x-ray scattering from imploding capsules at the National Ignition Facility. Journal of physics / Conference Series, 2016. 717: p. UNSP 012067 DOI: 10.1088/1742-6596/717/1/012067. http://repository.gsi.de/record/201100
http://dx.doi.org/10.1088/1742-6596/717/1/012067.
84. Kraus, D., et al., Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications, 2016. 7: p. 10970 DOI: 10.1038/ncomms10970. http://repository.gsi.de/record/194921
http://dx.doi.org/10.1038/ncomms10970.
85. Krey, J., et al., Effect of B$_2$O$_3$ and fluoride additions on the Yb$^{3+}$ luminescence of an alumosilicate glass in the system Li$_2$O/MgO/Al$_2$O$_3$/SiO$_2$. Optical materials express, 2016. 6(8): p. 2662 - DOI: 10.1364/OME.6.002662. http://repository.gsi.de/record/200926
http://dx.doi.org/10.1364/OME.6.002662.
86. Krieg, J., et al., Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi$_2$Te$_3$ Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy. Nano letters, 2016. 16(7): p. 4001 - 4007 DOI: 10.1021/acs.nanolett.6b00400. http://repository.gsi.de/record/195740
http://dx.doi.org/10.1021/acs.nanolett.6b00400.
87. Kübel, M., et al., Complete characterization of single-cycle double ionization of argon from the nonsequential to the sequential ionization regime. Physical review / A, 2016. 93(5): p. 053422 DOI: 10.1103/PhysRevA.93.053422. http://repository.gsi.de/record/200954
http://dx.doi.org/10.1103/PhysRevA.93.053422.
88. Kuschel, S., et al., Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch. Physical review accelerators and beams, 2016. 19(7): p. 071301 DOI: 10.1103/PhysRevAccelBeams.19.071301. http://repository.gsi.de/record/200936
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.071301.
89. Landgraf, B., et al., Broadband stimulated Raman backscattering. New journal of physics, 2016. 18(7): p. 073048 DOI: 10.1088/1367-2630/18/7/073048. http://repository.gsi.de/record/200931
http://dx.doi.org/10.1088/1367-2630/18/7/073048.
90. Lestinsky, M., et al., Physics book: CRYRING@ESR. European physical journal special topics, 2016. 225(5): p. 797 - 882 DOI: 10.1140/epjst/e2016-02643-6. http://repository.gsi.de/record/195722
http://dx.doi.org/10.1140/epjst/e2016-02643-6.
91. Li, H., et al., Intensity dependence of the dissociative ionization of DCl in few-cycle laser fields. Journal of physics / B, 2016. 49(1): p. 015601 DOI: 10.1088/0953-4075/49/1/015601. http://repository.gsi.de/record/200900
http://dx.doi.org/10.1088/0953-4075/49/1/015601.
92. Liebetrau, H., et al., High contrast, 86 fs, 35 mJ pulses from a diode-pumped, Yb:glass, double-chirped-pulse amplification laser system. Optics letters, 2016. 41(13): p. 3006 - DOI: 10.1364/OL.41.003006. http://repository.gsi.de/record/200934
http://dx.doi.org/10.1364/OL.41.003006.
93. Lushchik, A., et al., Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nuclear instruments & methods in physics research / B, 2016. 374: p. 90 - 96 DOI: 10.1016/j.nimb.2015.07.004. http://repository.gsi.de/record/201074
http://dx.doi.org/10.1016/j.nimb.2015.07.004.
94. Ma, G., et al., Control of transmission of right circularly polarized laser light in overdense plasma by applied magnetic field pulses. Physical review / E, 2016. 93(5): p. 053209 DOI: 10.1103/PhysRevE.93.053209. http://repository.gsi.de/record/201225
http://dx.doi.org/10.1103/PhysRevE.93.053209.
95. Meftah, A., et al., Data consistencies of swift heavy ion induced damage creation in yttrium iron garnet analyzed by different techniques. Nuclear instruments & methods in physics research / B, 2016. 366: p. 155 - 160 DOI: 10.1016/j.nimb.2015.10.030. http://repository.gsi.de/record/180924
http://dx.doi.org/10.1016/j.nimb.2015.10.030.
96. Mei, B., et al., Odd-even staggering in yields of neutron-deficient nuclei produced by projectile fragmentation. Physical review / C, 2016. 94(4): p. 044615 DOI: 10.1103/PhysRevC.94.044615. http://repository.gsi.de/record/201110
http://dx.doi.org/10.1103/PhysRevC.94.044615.
97. Meinerzhagen, F., et al., A new setup for the investigation of swift heavy ion induced particle emission and surface modifications. Review of scientific instruments, 2016. 87(1): p. 013903 - DOI: 10.1063/1.4939899. http://repository.gsi.de/record/187042
http://dx.doi.org/10.1063/1.4939899.
98. Minamisono, K., et al., Charge Radii of Neutron Deficient $^{52 , 53}$Fe Produced by Projectile Fragmentation. Physical review letters, 2016. 117(25): p. 252501 DOI: 10.1103/PhysRevLett.117.252501. http://repository.gsi.de/record/200898
http://dx.doi.org/10.1103/PhysRevLett.117.252501.
99. Mintsev, V., et al., Non-Ideal Plasma and Early Experiments at FAIR: HIHEX - Heavy Ion Heating and EXpansion. Contributions to plasma physics, 2016. 56(3-4): p. 281 - 285 DOI: 10.1002/ctpp.201500105. http://repository.gsi.de/record/194916
http://dx.doi.org/10.1002/ctpp.201500105.
100. Movsesyan, L., et al., Influence of electrodeposition parameters on the structure and morphology of ZnO nanowire arrays and networks synthesized in etched ion-track membranes. Semiconductor science and technology, 2016. 31(1): p. 014006 DOI: 10.1088/0268-1242/31/1/014006. http://repository.gsi.de/record/161400
http://dx.doi.org/10.1088/0268-1242/31/1/014006.
101. Mueller, M., et al., Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers. Optics express, 2016. 24(8): p. 7893 - DOI: 10.1364/OE.24.007893. http://repository.gsi.de/record/200965
http://dx.doi.org/10.1364/OE.24.007893.
102. Muench, F., et al., Electrodeposition and electroless plating of hierarchical metal superstructures composed of 1D nano- and microscale building blocks. Electrochimica acta, 2016. 202: p. 47 - 54 DOI: 10.1016/j.electacta.2016.03.188. http://repository.gsi.de/record/187043
http://dx.doi.org/10.1016/j.electacta.2016.03.188.
103. Müller, M., et al., 1 kW 1 mJ eight-channel ultrafast fiber laser. Optics letters, 2016. 41(15): p. 3439 - DOI: 10.1364/OL.41.003439. http://repository.gsi.de/record/200929
http://dx.doi.org/10.1364/OL.41.003439.
104. Müller, R.A., et al., Photoionization of neutral atoms by X waves carrying orbital angular momentum. Physical review / A, 2016. 94(4): p. 041402 DOI: 10.1103/PhysRevA.94.041402. http://repository.gsi.de/record/200909
http://dx.doi.org/10.1103/PhysRevA.94.041402.
105. Murböck, T., et al., A compact source for bunches of singly charged atomic ions. Review of scientific instruments, 2016. 87(4): p. 043302 DOI: 10.1063/1.4944946. http://repository.gsi.de/record/201082
http://dx.doi.org/10.1063/1.4944946.
106. Murböck, T., et al., Rapid crystallization of externally produced ions in a Penning trap. Physical review / A, 2016. 94(4): p. 043410 DOI: 10.1103/PhysRevA.94.043410. http://repository.gsi.de/record/201080
http://dx.doi.org/10.1103/PhysRevA.94.043410.
107. Nadzri, A., et al., Composition dependent thermal annealing behaviour of ion tracks in apatite. Nuclear instruments & methods in physics research / B, 2016. 379: p. 211 - 214 DOI: 10.1016/j.nimb.2016.04.050. http://repository.gsi.de/record/200458
http://dx.doi.org/10.1016/j.nimb.2016.04.050.
108. Najafi, M.A., et al., CsI–Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS). Nuclear instruments & methods in physics research / A, 2016. 836: p. 1 - 6 DOI: 10.1016/j.nima.2016.08.040. http://repository.gsi.de/record/196140
http://dx.doi.org/10.1016/j.nima.2016.08.040.
109. Nousch, T., et al., Spectral caustics in laser assisted Breit–Wheeler process. Physics letters / B, 2016. 755: p. 162 - 167 DOI: 10.1016/j.physletb.2016.01.062. http://repository.gsi.de/record/201224
http://dx.doi.org/10.1016/j.physletb.2016.01.062.
110. Ortner, A., et al., A novel experimental setup for energy loss and charge state measurements in dense moderately coupled plasma using laser-heated hohlraum targets. Journal of physics / Conference Series, 2016. 688: p. 012081 DOI: 10.1088/1742-6596/688/1/012081. http://repository.gsi.de/record/194919
http://dx.doi.org/10.1088/1742-6596/688/1/012081.
111. Otto, A., et al., Pair production by Schwinger and Breit–Wheeler processes in bi-frequent fields. Journal of plasma physics, 2016. 82(03): p. 655820301 DOI: 10.1017/S0022377816000428. http://repository.gsi.de/record/201226
http://dx.doi.org/10.1017/S0022377816000428.
112. Pavićević, M.K., et al., Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides ( $^{26}$Al, $^{36}$Cl, $^{3}$He, and $^{21}$Ne). Geochemistry, geophysics, geosystems, 2016. 17(2): p. 410 - 424 DOI: 10.1002/2015GC006054. http://repository.gsi.de/record/186987
http://dx.doi.org/10.1002/2015GC006054.
113. Pérez-Mitta, G., et al., The Influence of Divalent Anions on the Rectification Properties of Nanofluidic Diodes: Insights from Experiments and Theoretical Simulations. ChemPhysChem, 2016. 17(17): p. 2718 - 2725 DOI: 10.1002/cphc.201600370. http://repository.gsi.de/record/200456
http://dx.doi.org/10.1002/cphc.201600370.
114. Pérez-Mitta, G., et al., Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols. Nanoscale, 2016. 8(3): p. 1470 - 1478 DOI: 10.1039/C5NR08190D. http://repository.gsi.de/record/187005
http://dx.doi.org/10.1039/C5NR08190D.
115. Peshkov, A.A., et al., Absorption of twisted light by a mesoscopic atomic target. Physica scripta, 2016. 91(6): p. 064001 DOI: 10.1088/0031-8949/91/6/064001. http://repository.gsi.de/record/200956
http://dx.doi.org/10.1088/0031-8949/91/6/064001.
116. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Hydrodynamic growth and decay of planar shock waves. Physics of plasmas, 2016. 23(3): p. 032704 DOI: 10.1063/1.4943198. http://repository.gsi.de/record/201089
http://dx.doi.org/10.1063/1.4943198.
117. Piriz, A.R., Y.B. Sun, and N.A. Tahir, Entropy shaping by shock decay. Physics of plasmas, 2016. 23(11): p. 112704 DOI: 10.1063/1.4967463. http://repository.gsi.de/record/196330
http://dx.doi.org/10.1063/1.4967463.
118. Podorov, S.G. and E. Förster, Direct inversion of digital 3D Fraunhofer holography maps. Applied optics, 2016. 55(3): p. A150 - DOI: 10.1364/AO.55.00A150. http://repository.gsi.de/record/200981
http://dx.doi.org/10.1364/AO.55.00A150.
119. Pratt, R.H., R.A. Müller, and A. Surzhykov, Sum rules for the polarization correlations in photoionization and bremsstrahlung. Physical review / A, 2016. 93(5): p. 053421 DOI: 10.1103/PhysRevA.93.053421. http://repository.gsi.de/record/189648
http://dx.doi.org/10.1103/PhysRevA.93.053421.
120. Pugachev, L.P., et al., Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets. Nuclear instruments & methods in physics research / A, 2016. 829: p. 88 - 93 DOI: 10.1016/j.nima.2016.02.053. http://repository.gsi.de/record/194922
http://dx.doi.org/10.1016/j.nima.2016.02.053.
121. Qiu, Y., et al., Role of Particle Focusing in Resistive-Pulse Technique: Direction-Dependent Velocity in Micropores. ACS nano, 2016. 10(3): p. 3509 - 3517 DOI: 10.1021/acsnano.5b07709. http://repository.gsi.de/record/200465
http://dx.doi.org/10.1021/acsnano.5b07709.
122. Rothhardt, J., et al., High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. Optics express, 2016. 24(16): p. 18133 DOI: 10.1364/OE.24.018133. http://repository.gsi.de/record/200927
http://dx.doi.org/10.1364/OE.24.018133.
123. Rothhardt, J., et al., 100 W average power femtosecond laser at 343 nm. Optics letters, 2016. 41(8): p. 1885 - DOI: 10.1364/OL.41.001885. http://repository.gsi.de/record/200966
http://dx.doi.org/10.1364/OL.41.001885.
124. Rykovanov, S.G., et al., Reply to “Comment on ‘Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping’”. Physical review accelerators and beams, 2016. 19(9): p. 098002 DOI: 10.1103/PhysRevAccelBeams.19.098002. http://repository.gsi.de/record/201221
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.098002.
125. Rykovanov, S.G., et al., Tunable polarization plasma channel undulator for narrow bandwidth photon emission. Physical review accelerators and beams, 2016. 19(9): p. 090703 DOI: 10.1103/PhysRevAccelBeams.19.090703. http://repository.gsi.de/record/200921
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.090703.
126. Sachan, R., et al., Insights on dramatic radial fluctuations in track formation by energetic ions. Scientific reports, 2016. 6: p. 27196 DOI: 10.1038/srep27196. http://repository.gsi.de/record/200459
http://dx.doi.org/10.1038/srep27196.
127. Schäfer, M., I. Huet, and H. Gies, Worldline numerics for energy-momentum tensors in Casimir geometries. Journal of physics / A, 2016. 49(13): p. 135402 - DOI: 10.1088/1751-8113/49/13/135402. http://repository.gsi.de/record/200976
http://dx.doi.org/10.1088/1751-8113/49/13/135402.
128. Schippers, S., et al., Prominent role of multielectron processes in K -shell double and triple photodetachment of oxygen anions. Physical review / A, 2016. 94(4): p. 041401 DOI: 10.1103/PhysRevA.94.041401. http://repository.gsi.de/record/200910
http://dx.doi.org/10.1103/PhysRevA.94.041401.
129. Schöffler, M.S., et al., Laser-subcycle control of sequential double-ionization dynamics of helium. Physical review / A, 2016. 93(6): p. 063421 DOI: 10.1103/PhysRevA.93.063421. http://repository.gsi.de/record/200946
http://dx.doi.org/10.1103/PhysRevA.93.063421.
130. Scholtes, T., et al., Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range. Physical review / A, 2016. 94(1): p. 013403 DOI: 10.1103/PhysRevA.94.013403. http://repository.gsi.de/record/200935
http://dx.doi.org/10.1103/PhysRevA.94.013403.
131. Schönlein, A., et al., Generation and characterization of warm dense matter isochorically heated by laser-induced relativistic electrons in a wire target. epl, 2016. 114(4): p. 45002 - DOI: 10.1209/0295-5075/114/45002. http://repository.gsi.de/record/201086
http://dx.doi.org/10.1209/0295-5075/114/45002.
132. Schubert, I., et al., Porous Gold Nanowires: Plasmonic Response and Surface-Enhanced Infrared Absorption. Advanced optical materials, 2016. 1: p. 1-8 DOI: 10.1002/adom.201600430. http://repository.gsi.de/record/194862
http://dx.doi.org/10.1002/adom.201600430.
133. Seipt, D., et al., Analytical results for nonlinear Compton scattering in short intense laser pulses. Journal of plasma physics, 2016. 82(02): p. 655820203 DOI: 10.1017/S002237781600026X. http://repository.gsi.de/record/189646
http://dx.doi.org/10.1017/S002237781600026X.
134. Seipt, D., et al., Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light. Physical review / A, 2016. 94(5): p. 053420 DOI: 10.1103/PhysRevA.94.053420. http://repository.gsi.de/record/200906
http://dx.doi.org/10.1103/PhysRevA.94.053420.
135. Seipt, D., et al., Caustic structures in x-ray Compton scattering off electrons driven by a short intense laser pulse. New journal of physics, 2016. 18(2): p. 023044 DOI: 10.1088/1367-2630/18/2/023044. http://repository.gsi.de/record/185777
http://dx.doi.org/10.1088/1367-2630/18/2/023044.
136. Serrat, C., et al., Avalanche of stimulated forward scattering in high harmonic generation. Optics express, 2016. 24(8): p. 8028 - DOI: 10.1364/OE.24.008028. http://repository.gsi.de/record/200963
http://dx.doi.org/10.1364/OE.24.008028.
137. Shah, C., et al., Strong higher-order resonant contributions to x-ray line polarization in hot plasmas. Physical review / E, 2016. 93(6): p. 061201 DOI: 10.1103/PhysRevE.93.061201. http://repository.gsi.de/record/200951
http://dx.doi.org/10.1103/PhysRevE.93.061201.
138. Shamblin, J., et al., Structural response of titanate pyrochlores to swift heavy ion irradiation. Acta materialia, 2016. 117: p. 207 - 215 DOI: 10.1016/j.actamat.2016.07.017. http://repository.gsi.de/record/200455
http://dx.doi.org/10.1016/j.actamat.2016.07.017.
139. Shuai, P., et al., An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors. Nuclear instruments & methods in physics research / B, 2016. 376: p. 311 - 315 DOI: 10.1016/j.nimb.2016.02.006. http://repository.gsi.de/record/201124
http://dx.doi.org/10.1016/j.nimb.2016.02.006.
140. Siminos, E., et al., Modeling ultrafast shadowgraphy in laser-plasma interaction experiments. Plasma physics and controlled fusion, 2016. 58(6): p. 065004 DOI: 10.1088/0741-3335/58/6/065004. http://repository.gsi.de/record/200960
http://dx.doi.org/10.1088/0741-3335/58/6/065004.
141. Stockem Novo, A., et al., Optimizing laser-driven proton acceleration from overdense targets. Scientific reports, 2016. 6: p. 29402 DOI: 10.1038/srep29402. http://repository.gsi.de/record/200940
http://dx.doi.org/10.1038/srep29402.
142. Surzhykov, A., D. Seipt, and S. Fritzsche, Probing the energy flow in Bessel light beams using atomic photoionization. Physical review / A, 2016. 94(3): p. 033420 DOI: 10.1103/PhysRevA.94.033420. http://repository.gsi.de/record/200920
http://dx.doi.org/10.1103/PhysRevA.94.033420.
143. Tadesse, G.K., et al., High speed and high resolution table-top nanoscale imaging. Optics letters, 2016. 41(22): p. 5170 - DOI: 10.1364/OL.41.005170. http://repository.gsi.de/record/200904
http://dx.doi.org/10.1364/OL.41.005170.
144. Tahir, N.A., et al., High energy density physics effects predicted in simulations of the CERN HiRadMat beam–target interaction experiments. High energy density physics, 2016. 21: p. 27 - 34 DOI: 10.1016/j.hedp.2016.09.002. http://repository.gsi.de/record/201101
http://dx.doi.org/10.1016/j.hedp.2016.09.002.
145. Tahir, N.A., et al., Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components. Physical review accelerators and beams, 2016. 19(8): p. 081002 DOI: 10.1103/PhysRevAccelBeams.19.081002. http://repository.gsi.de/record/201088
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.081002.
146. Tahir, N.A., et al., High Energy Density Physics Research Using Intense Heavy Ion Beam at FAIR: The HEDgeHOB Program, in 8th International Conference on Inertial Fusion Sciences and Applications. 2016, IOP Publ.: Bristol, UK. p. 012118 DOI: 10.1088/1742-6596/688/1/012118. http://repository.gsi.de/record/186453
http://dx.doi.org/10.1088/1742-6596/688/1/012118.
147. Tanikawa, T., et al., First observation of SASE radiation using the compact wide-spectral-range XUV spectrometer at FLASH2. Nuclear instruments & methods in physics research / A, 2016. 830: p. 170 - 175 DOI: 10.1016/j.nima.2016.05.088. http://repository.gsi.de/record/200914
http://dx.doi.org/10.1016/j.nima.2016.05.088.
148. Titov, A.I., et al., Determination of the carrier envelope phase for short, circularly polarized laser pulses. Physical review / D, 2016. 93(4): p. 045010 DOI: 10.1103/PhysRevD.93.045010. http://repository.gsi.de/record/200979
http://dx.doi.org/10.1103/PhysRevD.93.045010.
149. Toulemonde, M., W. Assmann, and C. Trautmann, Electronic sputtering of vitreous SiO$_2$: Experimental and modeling results. Nuclear instruments & methods in physics research / B, 2016. 379: p. 2 - 8 DOI: 10.1016/j.nimb.2016.03.023. http://repository.gsi.de/record/189555
http://dx.doi.org/10.1016/j.nimb.2016.03.023.
150. Tracy, C.L., et al., Anisotropic expansion and amorphization of Ga$_2$O$_3$ irradiated with 946MeV Au ions. Nuclear instruments & methods in physics research / B, 2016. 374: p. 40 - 44 DOI: 10.1016/j.nimb.2015.08.059. http://repository.gsi.de/record/187044
http://dx.doi.org/10.1016/j.nimb.2015.08.059.
151. Tracy, C.L., et al., Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation. Physical review / B, 2016. 94(6): p. 064102 DOI: 10.1103/PhysRevB.94.064102. http://repository.gsi.de/record/194863
http://dx.doi.org/10.1103/PhysRevB.94.064102.
152. Tu, X.L., et al., Indirect mass determination for the neutron-deficient nuclides $^{44}$V, $^{48}$Mn, $^{52}$Co and $^{56}$Cu. Nuclear physics <Amsterdam> / A, 2016. 945: p. 89 - 94 DOI: 10.1016/j.nuclphysa.2015.09.016. http://repository.gsi.de/record/185641
http://dx.doi.org/10.1016/j.nuclphysa.2015.09.016.
153. Varentsov, D., et al., Commissioning of the PRIOR proton microscope. Review of scientific instruments, 2016. 87(2): p. 023303 DOI: 10.1063/1.4941685. http://repository.gsi.de/record/201095
http://dx.doi.org/10.1063/1.4941685.
154. Volotka, A.V., et al., Nuclear Excitation by Two-Photon Electron Transition. Physical review letters, 2016. 117(24): p. 243001 DOI: 10.1103/PhysRevLett.117.243001. http://repository.gsi.de/record/200492
http://dx.doi.org/10.1103/PhysRevLett.117.243001.
155. Volotka, A.V., et al., Many-electron effects on x-ray Rayleigh scattering by highly charged He-like ions. Physical review / A, 2016. 93(2): p. 023418 DOI: 10.1103/PhysRevA.93.023418. http://repository.gsi.de/record/186145
http://dx.doi.org/10.1103/PhysRevA.93.023418.
156. Wagner, F., et al., Accelerating ions with high-energy short laser pulses from submicrometer thick targets. High power laser science and engineering, 2016. 4: p. e45 DOI: 10.1017/hpl.2016.44. http://repository.gsi.de/record/200567
http://dx.doi.org/10.1017/hpl.2016.44.
157. Wagner, F., et al., Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH$_2$ Targets. Physical review letters, 2016. 116(20): p. 205002 DOI: 10.1103/PhysRevLett.116.205002. http://repository.gsi.de/record/200957
http://dx.doi.org/10.1103/PhysRevLett.116.205002.
158. Wagner, M.F.P., et al., Fabrication and thermoelectrical characterization of three-dimensional nanowire networks. Physica status solidi / A, 2016. 213(3): p. 610 - 619 DOI: 10.1002/pssa.201532616. http://repository.gsi.de/record/187004
http://dx.doi.org/10.1002/pssa.201532616.
159. Wahyutama, I.S., et al., Influence of detector noise in holographic imaging with limited photon flux. Optics express, 2016. 24(19): p. 22013 DOI: 10.1364/OE.24.022013. http://repository.gsi.de/record/200915
http://dx.doi.org/10.1364/OE.24.022013.
160. Wang, J.W., et al., High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma. Physical review accelerators and beams, 2016. 19(2): p. 021301 DOI: 10.1103/PhysRevAccelBeams.19.021301. http://repository.gsi.de/record/200978
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.021301.
161. Wen, Q., et al., Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films. Advanced functional materials, 2016. 26(32): p. 5796 - 5803 DOI: 10.1002/adfm.201601689. http://repository.gsi.de/record/189579
http://dx.doi.org/10.1002/adfm.201601689.
162. Wu, Z.W., et al., Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light. Physical review / A, 2016. 93(6): p. 063413 DOI: 10.1103/PhysRevA.93.063413. http://repository.gsi.de/record/200947
http://dx.doi.org/10.1103/PhysRevA.93.063413.
163. Xu, X., et al., Identification of the Lowest T = 2 , J$^π$ = 0$^+$ Isobaric Analog State in $^{52}$Co and Its Impact on the Understanding of β -Decay Properties of $^{52}$Ni. Physical review letters, 2016. 117(18): p. 182503 DOI: 10.1103/PhysRevLett.117.182503. http://repository.gsi.de/record/195812
http://dx.doi.org/10.1103/PhysRevLett.117.182503.
164. Yan, X., et al., Preface [ Nuclear Physics in Astrophysics VI (NPA6) ]. Journal of physics / Conference Series, 2016. 665: p. 011001 DOI: 10.1088/1742-6596/665/1/011001. http://repository.gsi.de/record/184272
http://dx.doi.org/10.1088/1742-6596/665/1/011001.
165. Yan, X., et al., Recent results on mass measurements of exotic nuclides in storage rings. Nuclear Physics in Astrophysics VI, 2016. 665: p. 012053 DOI: 10.1088/1742-6596/665/1/012053. http://repository.gsi.de/record/185618
http://dx.doi.org/10.1088/1742-6596/665/1/012053.
166. Yang, X.F., et al., Isomer Shift and Magnetic Moment of the Long-Lived 1/2$^+$ Isomer in $^{79}_{30}$Zn$_{49}$: Signature of Shape Coexistence near $^{78}$Ni. Physical review letters, 2016. 116(18): p. 182502 DOI: 10.1103/PhysRevLett.116.182502. http://repository.gsi.de/record/201651
http://dx.doi.org/10.1103/PhysRevLett.116.182502.
167. Yerokhin, V.A., et al., Electric dipole polarizabilities of Rydberg states of alkali-metal atoms. Physical review / A, 2016. 94(3): p. 032503 DOI: 10.1103/PhysRevA.94.032503. http://repository.gsi.de/record/200919
http://dx.doi.org/10.1103/PhysRevA.94.032503.
168. Yeung, M., et al., Experimental observation of attosecond control over relativistic electron bunches with two-colour fields. Nature photonics, 2016. 11(1): p. 32 - 35 DOI: 10.1038/nphoton.2016.239. http://repository.gsi.de/record/200894
http://dx.doi.org/10.1038/nphoton.2016.239.
169. Zabels, R., et al., MeV-energy Xe ion-induced damage in LiF: The contribution of electronic and nuclear stopping mechanisms. Physica status solidi / B, 2016. 253(8): p. 1511 - 1516 DOI: 10.1002/pssb.201552704. http://repository.gsi.de/record/201075
http://dx.doi.org/10.1002/pssb.201552704.
170. Zhang, Y.H., et al., Storage ring mass spectrometry for nuclear structure and astrophysics research. Physica scripta, 2016. 91(7): p. 073002 DOI: 10.1088/0031-8949/91/7/073002. http://repository.gsi.de/record/189644
http://dx.doi.org/10.1088/0031-8949/91/7/073002.
171. Zubova, N.A., et al., Isotope shifts of the 2p$_{3 / 2}$ − 2p$_{1/2}$ transition in B-like ions. Physical review / A, 2016. 93(5): p. 052502 DOI: 10.1103/PhysRevA.93.052502. http://repository.gsi.de/record/200955
http://dx.doi.org/10.1103/PhysRevA.93.052502.