ISI/Scopus publications to the research unit LK2 (2013-2016)

go to main page

2013

1. Fabbricatore, P., et al., The Curved Fast Ramped Superconducting Dipoles for FAIR SIS300 Synchrotron: From First Model to Future Developments. IEEE transactions on applied superconductivity, 2013. 23(3): p. 4000505 - 4000505 DOI: 10.1109/TASC.2012.2229332. http://repository.gsi.de/record/48356

http://dx.doi.org/10.1109/TASC.2012.2229332.

2. Fischer, E., et al., Status of the SC Magnets for the SIS100 Synchrotron and the NICA Project. IEEE transactions on applied superconductivity, 2013. 23(3): p. 4100504 - 4100504 DOI: 10.1109/TASC.2012.2232952. http://repository.gsi.de/record/48355

http://dx.doi.org/10.1109/TASC.2012.2232952.

3. Haas, O.S., O. Boine-Frankenheim, and F. Petrov, Simulations of the electron cloud buildup and its influence on the microwave transmission measurement. Nuclear instruments & methods in physics research / A, 2013. 729: p. 290 - 295 DOI: 10.1016/j.nima.2013.07.051. http://repository.gsi.de/record/54112

http://dx.doi.org/10.1016/j.nima.2013.07.051.

4. Lécz, Z., O. Boine-Frankenheim, and V. Kornilov, Target normal sheath acceleration for arbitrary proton layer thickness. Nuclear instruments & methods in physics research / A, 2013. 727: p. 51 - 58 DOI: 10.1016/j.nima.2013.05.163. http://repository.gsi.de/record/54115

http://dx.doi.org/10.1016/j.nima.2013.05.163.

5. Lens, D. and H. Klingbeil, Stability of longitudinal bunch length feedback for heavy-ion synchrotrons. , 2013. 16(3): p. 032801 DOI: 10.1103/PhysRevSTAB.16.032801. http://repository.gsi.de/record/54105

http://dx.doi.org/10.1103/PhysRevSTAB.16.032801.

6. Litvinov, S., et al., Isochronicity correction in the CR storage ring. Nuclear instruments & methods in physics research / A, 2013. 724: p. 20 - 26 DOI: 10.1016/j.nima.2013.05.057. http://repository.gsi.de/record/54109

http://dx.doi.org/10.1016/j.nima.2013.05.057.

7. Michel, J., et al., In-beam experience with a highly granular DAQ and control network: TrbNet. Journal of Instrumentation, 2013. 8(02): p. C02034 - C02034 DOI: 10.1088/1748-0221/8/02/C02034. http://repository.gsi.de/record/50278

http://dx.doi.org/10.1088/1748-0221/8/02/C02034.

8. Sanjari, M.S., et al., A resonant Schottky pickup for the study of highly charged ions in storage rings. Physica scripta, 2013. T156: p. 014088 DOI: 10.1088/0031-8949/2013/T156/014088. http://repository.gsi.de/record/54897

http://dx.doi.org/10.1088/0031-8949/2013/T156/014088.

9. Schnizer, P., et al., Design Optimization, Series Production, and Testing of the SIS100 Superconducting Magnets for FAIR. IEEE transactions on applied superconductivity, 2013. 23(3): p. 4101105 - 4101105 DOI: 10.1109/TASC.2012.2236132. http://repository.gsi.de/record/48354

http://dx.doi.org/10.1109/TASC.2012.2236132.

10. Shim, S.Y., S. Wilfert, and C. Muehle, Secondary magnetic field harmonics dependence on vacuum beam chamber geometry. Physical review / Special topics / Accelerators and beams, 2013. 16(8): p. 082401 DOI: 10.1103/PhysRevSTAB.16.082401. http://repository.gsi.de/record/54300

http://dx.doi.org/10.1103/PhysRevSTAB.16.082401.

11. Singh, R., et al., Interpretation of transverse tune spectra in a heavy-ion synchrotron at high intensities. Physical review / Special topics / Accelerators and beams, 2013. 16(3): p. 034201 DOI: 10.1103/PhysRevSTAB.16.034201. http://repository.gsi.de/record/64848

http://dx.doi.org/10.1103/PhysRevSTAB.16.034201.

12. Struckmeier, J., Generalized U(N) gauge transformations in the realm of the extended covariant Hamilton formalism of field theory. Journal of physics / G, 2013. 40: p. 015007 DOI: 10.1088/0954-3899/40/1/015007. http://repository.gsi.de/record/48399

http://dx.doi.org/10.1088/0954-3899/40/1/015007.

13. Szwangruber, P., et al., Three-Dimensional Quench Calculations for the FAIR Super-FRS Main Dipole. IEEE transactions on applied superconductivity, 2013. 23(3): p. 4701704 - 4701704 DOI: 10.1109/TASC.2013.2243198. http://repository.gsi.de/record/50773

http://dx.doi.org/10.1109/TASC.2013.2243198.

14. Volpini, G., et al., AC Losses Measurement of the DISCORAP Model Dipole Magnet for the SIS 300 Synchrotron at FAIR. IEEE transactions on applied superconductivity, 2013. PP(89): p. 1 - 1 DOI: 10.1109/TASC.2013.2280733. http://repository.gsi.de/record/54319

http://dx.doi.org/10.1109/TASC.2013.2280733.

15. Xiao, C., et al., Single-knob beam line for transverse emittance partitioning. Physical review / Special topics / Accelerators and beams, 2013. 16(4): p. 044201 DOI: 10.1103/PhysRevSTAB.16.044201. http://repository.gsi.de/record/64849

http://dx.doi.org/10.1103/PhysRevSTAB.16.044201.

16. Yinfeng Zhu, et al., Design and Analysis of the Thermal Shield of the Prototype Superconducting Dipole Magnet for GSI. IEEE transactions on applied superconductivity, 2013. 23(2): p. 4001108 - 4001108 DOI: 10.1109/TASC.2012.2237512. http://repository.gsi.de/record/53623

http://dx.doi.org/10.1109/TASC.2012.2237512.

 

2014

 1. Aurand, B., et al., Ultra-thin polymer foils for laser-ion acceleration. Journal of radioanalytical and nuclear chemistry, 2014. 299(2): p. 965 - 968 DOI: 10.1007/s10967-013-2627-3. http://repository.gsi.de/record/66570

http://dx.doi.org/10.1007/s10967-013-2627-3.

2. Barth, W., et al., Carbon stripper foils for high current heavy ion operation. Journal of radioanalytical and nuclear chemistry, 2014. 299(2): p. 1047 - 1053 DOI: 10.1007/s10967-013-2651-3. http://repository.gsi.de/record/66572

http://dx.doi.org/10.1007/s10967-013-2651-3.

3. Eberhardt, K., et al., Targets for accelerator-based research. Journal of radioanalytical and nuclear chemistry, 2014. 299(2): p. 909 - 912 DOI: 10.1007/s10967-013-2777-3. http://repository.gsi.de/record/66569

http://dx.doi.org/10.1007/s10967-013-2777-3.

4. Fischer, E., et al., Status of the Superconducting Magnets for FAIR. IEEE transactions on applied superconductivity, 2014. 24(3): p. 1 - 7 DOI: 10.1109/TASC.2013.2289960. http://repository.gsi.de/record/95660

http://dx.doi.org/10.1109/TASC.2013.2289960.

5. Groening, L., et al., Experimental Proof of Adjustable Single-Knob Ion Beam Emittance Partitioning. Physical review letters, 2014. 113(26): p. 264802 DOI: 10.1103/PhysRevLett.113.264802. http://repository.gsi.de/record/96814

http://dx.doi.org/10.1103/PhysRevLett.113.264802.

6. Kindler, B., et al., Self-supporting isotopic chromium thin films. Journal of radioanalytical and nuclear chemistry, 2014. 299(2): p. 1141 - 1143 DOI: 10.1007/s10967-013-2611-y. http://repository.gsi.de/record/66574

http://dx.doi.org/10.1007/s10967-013-2611-y.

7. Leibrock, H., et al., Optimization of the Quadrupoles for the Collector Ring of FAIR. IEEE transactions on applied superconductivity, 2014. 24(3): p. 1 - 4 DOI: 10.1109/TASC.2013.2282533. http://repository.gsi.de/record/66660

http://dx.doi.org/10.1109/TASC.2013.2282533.

8. Leibrock, H., et al., Solenoid Development for an Emittance Transfer Experiment With a Design Environment System. IEEE transactions on applied superconductivity, 2014. 24(3): p. 1 - 4 DOI: 10.1109/TASC.2013.2286006. http://repository.gsi.de/record/66661

http://dx.doi.org/10.1109/TASC.2013.2286006.

9. Lommel, B., et al., Reduction of isotopically enriched $^{50}Ti$-dioxide for the production of high-intensity heavy-ion beam. Journal of radioanalytical and nuclear chemistry, 2014. 299(2): p. 977 - 980 DOI: 10.1007/s10967-013-2615-7. http://repository.gsi.de/record/66571

http://dx.doi.org/10.1007/s10967-013-2615-7.

10. Osipowicz, A. and B. Zipfel, Electron optical imaging properties of the KATRIN high field solenoid chain. Nuclear instruments & methods in physics research / A, 2014. 760: p. 68 - 72 DOI: 10.1016/j.nima.2014.05.066. http://repository.gsi.de/record/96889

http://dx.doi.org/10.1016/j.nima.2014.05.066.

11. Rinaldi, I., et al., A method to increase the nominal range resolution of a stack of parallel-plate ionization chambers. Physics in medicine and biology, 2014. 59(18): p. 5501 - 5515 DOI: 10.1088/0031-9155/59/18/5501. http://repository.gsi.de/record/97075

http://dx.doi.org/10.1088/0031-9155/59/18/5501.

12. Schirru, F., D. Chokheli, and M. Kiš, Thin single crystal diamond detectors for alpha particle detection. Diamond and related materials, 2014. 49: p. 96 - 102 DOI: 10.1016/j.diamond.2014.08.001. http://repository.gsi.de/record/96800

http://dx.doi.org/10.1016/j.diamond.2014.08.001.

13. Xiao, C., L. Groening, and O.K. Kester, Collimation and decoupling of ECR source beams for brilliance optimization. Nuclear instruments & methods in physics research / A, 2014. 738: p. 167 - 176 DOI: 10.1016/j.nima.2013.11.084. http://repository.gsi.de/record/66659

http://dx.doi.org/10.1016/j.nima.2013.11.084.

 

2015

 1. Boine-Frankenheim, O., et al., Artificial collisions, entropy and emittance growth in computer simulations of intense beamsbOP. Nuclear instruments & methods in physics research / A, 2015. 770: p. 164 - 168 DOI: 10.1016/j.nima.2014.10.004. http://repository.gsi.de/record/205469

http://dx.doi.org/10.1016/j.nima.2014.10.004.

2. Chung, M., et al., Beam envelope calculations in general linear coupled lattices. Physics of plasmas, 2015. 22(1): p. 013109 - DOI: 10.1063/1.4903457. http://repository.gsi.de/record/97473

http://dx.doi.org/10.1063/1.4903457.

3. Fischer, E., et al., Fast-Ramped Superconducting Magnets for FAIR Production Status and First Test Results. IEEE transactions on applied superconductivity, 2015. 25(3): p. 1 - 5 DOI: 10.1109/TASC.2015.2392157. http://repository.gsi.de/record/184644

http://dx.doi.org/10.1109/TASC.2015.2392157

<Go to ISI>://WOS:000351462800004.

4. Hofmann, I. and O. Boine-Frankenheim, Space-Charge Structural Instabilities and Resonances in High-Intensity Beams. Physical review letters, 2015. 115(20): p. 204802 DOI: 10.1103/PhysRevLett.115.204802. http://repository.gsi.de/record/184639

http://dx.doi.org/10.1103/PhysRevLett.115.204802.

5. Kalimov, A., et al., Optimization of the Sextupole Magnets With Trim Coils for the Collector Ring of the FAIR Project. IEEE transactions on magnetics, 2015. 51(3): p. 1 - 4 DOI: 10.1109/TMAG.2014.2362680. http://repository.gsi.de/record/184650

http://dx.doi.org/10.1109/TMAG.2014.2362680

<Go to ISI>://WOS:000353626200157.

6. Lecz, Z., O. Boine-Frankenheim, and V. Kornilov, Transverse divergence in target normal sheath acceleration of a thick contamination layer. Nuclear instruments & methods in physics research / A, 2015. 774: p. 42 - 50 DOI: 10.1016/j.nima.2014.11.062. http://repository.gsi.de/record/184649

http://dx.doi.org/10.1016/j.nima.2014.11.062

<Go to ISI>://WOS:000347407800007.

7. Lens, D., T. Faulwasser, and C.M. Kellett, Ansätze zur modellprädiktiven Regelung der longitudinalen Strahldynamik in Synchrotronen. Automatisierungstechnik, 2015. 63(8): p. 621 - 632 DOI: 10.1515/auto-2015-0020. http://repository.gsi.de/record/184642

http://dx.doi.org/10.1515/auto-2015-0020

<Go to ISI>://WOS:000358780200006.

8. Niedermayer, U., O. Boine-Frankenheim, and H. De Gersem, Space charge and resistive wall impedance computation in the frequency domain using the finite element method. Physical review / Special topics / Accelerators and beams, 2015. 18(3): p. 032001 DOI: 10.1103/PhysRevSTAB.18.032001. http://repository.gsi.de/record/184647

http://dx.doi.org/10.1103/PhysRevSTAB.18.032001

<Go to ISI>://WOS:000352075000002.

9. Niedermayer, U., L. Eidam, and O. Boine-Frankenheim, Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements. Nuclear instruments & methods in physics research / A, 2015. 776: p. 129 - 143 DOI: 10.1016/j.nima.2014.12.053. http://repository.gsi.de/record/184648

http://dx.doi.org/10.1016/j.nima.2014.12.053

<Go to ISI>://WOS:000349468500018.

10. Schnizer, P., et al., Low-Temperature Test Capabilities for the Superconducting Magnets of FAIR. IEEE transactions on applied superconductivity, 2015. 25(3): p. 1 - 5 DOI: 10.1109/TASC.2014.2376704. http://repository.gsi.de/record/184645

http://dx.doi.org/10.1109/TASC.2014.2376704

<Go to ISI>://WOS:000351462800016.

11. Strašík, I., I. Prokhorov, and O. Boine-Frankenheim, Beam halo collimation in heavy ion synchrotrons. Physical review / Special topics / Accelerators and beams, 2015. 18(8): p. 081001 DOI: 10.1103/PhysRevSTAB.18.081001. http://repository.gsi.de/record/184641

http://dx.doi.org/10.1103/PhysRevSTAB.18.081001

<Go to ISI>://WOS:000359059300001.

12. Xiao, C., et al., Straight low energy beam transport for intense uranium beams. Nuclear instruments & methods in physics research / A, 2015. 788: p. 173 - 181 DOI: 10.1016/j.nima.2015.03.055. http://repository.gsi.de/record/184643

http://dx.doi.org/10.1016/j.nima.2015.03.055

<Go to ISI>://WOS:000354870700028.

13. Yaramyshev, S., et al., Virtual charge state separator as an advanced tool coupling measurements and simulations. Physical review / Special topics / Accelerators and beams, 2015. 18(5): p. 050103 DOI: 10.1103/PhysRevSTAB.18.050103. http://repository.gsi.de/record/184646

http://dx.doi.org/10.1103/PhysRevSTAB.18.050103

<Go to ISI>://WOS:000355316500001.

 

2016

1. Boine-Frankenheim, O., I. Hofmann, and J. Struckmeier, Parametric sum envelope instability of periodically focused intense beams. Physics of plasmas, 2016. 23(9): p. 090705 DOI: 10.1063/1.4963851. http://repository.gsi.de/record/200580

http://dx.doi.org/10.1063/1.4963851.

2. Chen, X., et al., Intensity-sensitive and position-resolving cavity for heavy-ion storage rings. Nuclear instruments & methods in physics research / A, 2016. 826: p. 39 - 47 DOI: 10.1016/j.nima.2016.04.056. http://repository.gsi.de/record/200757

http://dx.doi.org/10.1016/j.nima.2016.04.056.

3. Chung, M., et al., Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams. Physical review letters, 2016. 117(22): p. 224801 DOI: 10.1103/PhysRevLett.117.224801. http://repository.gsi.de/record/200730

http://dx.doi.org/10.1103/PhysRevLett.117.224801.

4. Hwang, J.-G., T.-K. Yang, and P. Forck, High precision capacitive beam phase probe for KHIMA project. Nuclear instruments & methods in physics research / A, 2016. 837: p. 34 - 39 DOI: 10.1016/j.nima.2016.08.042. http://repository.gsi.de/record/200740

http://dx.doi.org/10.1016/j.nima.2016.08.042.

5. Karpov, I., V. Kornilov, and O. Boine-Frankenheim, Early transverse decoherence of bunches with space charge. Physical review accelerators and beams, 2016. 19(12): p. 124201 DOI: 10.1103/PhysRevAccelBeams.19.124201. http://repository.gsi.de/record/200648

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.124201.

6. Maimone, F., et al., Investigation of pulsed mode operation with the frequency tuned CAPRICE ECRIS. Review of scientific instruments, 2016. 87(2): p. 02A712 DOI: 10.1063/1.4933339. http://repository.gsi.de/record/200760

http://dx.doi.org/10.1063/1.4933339.

7. Schmidt, P. and O. Boine-Frankenheim, A gas-dynamical approach to radiation pressure acceleration. Physics of plasmas, 2016. 23(6): p. 063106 DOI: 10.1063/1.4952623. http://repository.gsi.de/record/200583

http://dx.doi.org/10.1063/1.4952623.

8. Sokolov, A., G. Fehrenbacher, and T. Radon, Design development of a passive neutron dodemeter for the use at high-energy accelerators. Radiation protection dosimetry, 2016. 170(1-4): p. 195 - 198 DOI: 10.1093/rpd/ncv489. http://repository.gsi.de/record/200691

http://dx.doi.org/10.1093/rpd/ncv489.

9. Spädtke, P., et al., Ion beam emittance from an ECRIS. Review of scientific instruments, 2016. 87(2): p. 02A724 DOI: 10.1063/1.4934210. http://repository.gsi.de/record/200761

http://dx.doi.org/10.1063/1.4934210.

10. Ullmann, C., et al., Investigation of ion beam space charge compensation with a 4-grid analyzer. Review of scientific instruments, 2016. 87(2): p. 02B938 DOI: 10.1063/1.4939782. http://repository.gsi.de/record/200762

http://dx.doi.org/10.1063/1.4939782.

11. Xiao, C., et al., Measurement of the transverse four-dimensional beam rms-emittance of an intense uranium beam at 11.4MeV/u. Nuclear instruments & methods in physics research / A, 2016. 820: p. 14 - 22 DOI: 10.1016/j.nima.2016.02.090. http://repository.gsi.de/record/196344

http://dx.doi.org/10.1016/j.nima.2016.02.090.

12. Xiao, C., et al., Rotating system for four-dimensional transverse rms-emittance measurements. Physical review accelerators and beams, 2016. 19(7): p. 072802 DOI: 10.1103/PhysRevAccelBeams.19.072802. http://repository.gsi.de/record/196337

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.072802.

13. Yamamoto, M., et al., Vacuum tube operation analysis under multi-harmonic driving and heavy beam loading effect in J-PARC RCS. Nuclear instruments & methods in physics research / A, 2016. 835: p. 119 - 135 DOI: 10.1016/j.nima.2016.08.028. http://repository.gsi.de/record/200755

http://dx.doi.org/10.1016/j.nima.2016.08.028.

14. Yin, X., W. Bayer, and I. Hofmann, Linac code benchmarking of HALODYN and PARMILA based on beam experiments. Nuclear instruments & methods in physics research / A, 2016. 806: p. 92 - 100 DOI: 10.1016/j.nima.2015.10.012. http://repository.gsi.de/record/200763

http://dx.doi.org/10.1016/j.nima.2015.10.012.